These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 20861027)

  • 21. Variant Calling From Next Generation Sequence Data.
    Hansen NF
    Methods Mol Biol; 2016; 1418():209-24. PubMed ID: 27008017
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Linkage disequilibrium based genotype calling from low-coverage shotgun sequencing reads.
    Duitama J; Kennedy J; Dinakar S; Hernández Y; Wu Y; Măndoiu II
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S53. PubMed ID: 21342586
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coval: improving alignment quality and variant calling accuracy for next-generation sequencing data.
    Kosugi S; Natsume S; Yoshida K; MacLean D; Cano L; Kamoun S; Terauchi R
    PLoS One; 2013; 8(10):e75402. PubMed ID: 24116042
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessing batch effects of genotype calling algorithm BRLMM for the Affymetrix GeneChip Human Mapping 500 K array set using 270 HapMap samples.
    Hong H; Su Z; Ge W; Shi L; Perkins R; Fang H; Xu J; Chen JJ; Han T; Kaput J; Fuscoe JC; Tong W
    BMC Bioinformatics; 2008 Aug; 9 Suppl 9(Suppl 9):S17. PubMed ID: 18793462
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A genotype calling algorithm for affymetrix SNP arrays.
    Rabbee N; Speed TP
    Bioinformatics; 2006 Jan; 22(1):7-12. PubMed ID: 16267090
    [TBL] [Abstract][Full Text] [Related]  

  • 26. OnlineCall: fast online parameter estimation and base calling for illumina's next-generation sequencing.
    Das S; Vikalo H
    Bioinformatics; 2012 Jul; 28(13):1677-83. PubMed ID: 22569177
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RVD2: an ultra-sensitive variant detection model for low-depth heterogeneous next-generation sequencing data.
    He Y; Zhang F; Flaherty P
    Bioinformatics; 2015 Sep; 31(17):2785-93. PubMed ID: 25931517
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fast and accurate short read alignment with Burrows-Wheeler transform.
    Li H; Durbin R
    Bioinformatics; 2009 Jul; 25(14):1754-60. PubMed ID: 19451168
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SNP calling using genotype model selection on high-throughput sequencing data.
    You N; Murillo G; Su X; Zeng X; Xu J; Ning K; Zhang S; Zhu J; Cui X
    Bioinformatics; 2012 Mar; 28(5):643-50. PubMed ID: 22253293
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coverage-based consensus calling (CbCC) of short sequence reads and comparison of CbCC results to identify SNPs in chickpea (Cicer arietinum; Fabaceae), a crop species without a reference genome.
    Azam S; Thakur V; Ruperao P; Shah T; Balaji J; Amindala B; Farmer AD; Studholme DJ; May GD; Edwards D; Jones JD; Varshney RK
    Am J Bot; 2012 Feb; 99(2):186-92. PubMed ID: 22301893
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic variable selection in SNP genotype autocalling from APEX microarray data.
    Podder M; Welch WJ; Zamar RH; Tebbutt SJ
    BMC Bioinformatics; 2006 Nov; 7():521. PubMed ID: 17137502
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Group-based variant calling leveraging next-generation supercomputing for large-scale whole-genome sequencing studies.
    Standish KA; Carland TM; Lockwood GK; Pfeiffer W; Tatineni M; Huang CC; Lamberth S; Cherkas Y; Brodmerkel C; Jaeger E; Smith L; Rajagopal G; Curran ME; Schork NJ
    BMC Bioinformatics; 2015 Sep; 16(1):304. PubMed ID: 26395405
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genotype calling from next-generation sequencing data using haplotype information of reads.
    Zhi D; Wu J; Liu N; Zhang K
    Bioinformatics; 2012 Apr; 28(7):938-46. PubMed ID: 22285565
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integrating human sequence data sets provides a resource of benchmark SNP and indel genotype calls.
    Zook JM; Chapman B; Wang J; Mittelman D; Hofmann O; Hide W; Salit M
    Nat Biotechnol; 2014 Mar; 32(3):246-51. PubMed ID: 24531798
    [TBL] [Abstract][Full Text] [Related]  

  • 35. distAngsd: Fast and Accurate Inference of Genetic Distances for Next-Generation Sequencing Data.
    Zhao L; Nielsen R; Korneliussen TS
    Mol Biol Evol; 2022 Jun; 39(6):. PubMed ID: 35647675
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A fast and accurate SNP detection algorithm for next-generation sequencing data.
    Xu F; Wang W; Wang P; Jun Li M; Chung Sham P; Wang J
    Nat Commun; 2012; 3():1258. PubMed ID: 23212387
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Testing Rare-Variant Association without Calling Genotypes Allows for Systematic Differences in Sequencing between Cases and Controls.
    Hu YJ; Liao P; Johnston HR; Allen AS; Satten GA
    PLoS Genet; 2016 May; 12(5):e1006040. PubMed ID: 27152526
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Smarter clustering methods for SNP genotype calling.
    Lin Y; Tseng GC; Cheong SY; Bean LJ; Sherman SL; Feingold E
    Bioinformatics; 2008 Dec; 24(23):2665-71. PubMed ID: 18826959
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Review of alignment and SNP calling algorithms for next-generation sequencing data.
    Mielczarek M; Szyda J
    J Appl Genet; 2016 Feb; 57(1):71-9. PubMed ID: 26055432
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Read trimming has minimal effect on bacterial SNP-calling accuracy.
    Bush SJ
    Microb Genom; 2020 Dec; 6(12):. PubMed ID: 33332257
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.