These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 20861160)

  • 1. Gene set enrichment; a problem of pathways.
    Davies MN; Meaburn EL; Schalkwyk LC
    Brief Funct Genomics; 2010 Dec; 9(5-6):385-90. PubMed ID: 20861160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. snpGeneSets: An R Package for Genome-Wide Study Annotation.
    Mei H; Li L; Jiang F; Simino J; Griswold M; Mosley T; Liu S
    G3 (Bethesda); 2016 Dec; 6(12):4087-4095. PubMed ID: 27807048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting discordance enrichment among a series of two-sample genome-wide expression data sets.
    Lai Y; Zhang F; Nayak TK; Modarres R; Lee NH; McCaffrey TA
    BMC Genomics; 2017 Jan; 18(Suppl 1):1050. PubMed ID: 28198679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Testing gene set enrichment for subset of genes: Sub-GSE.
    Yan X; Sun F
    BMC Bioinformatics; 2008 Sep; 9():362. PubMed ID: 18764941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seten: a tool for systematic identification and comparison of processes, phenotypes, and diseases associated with RNA-binding proteins from condition-specific CLIP-seq profiles.
    Budak G; Srivastava R; Janga SC
    RNA; 2017 Jun; 23(6):836-846. PubMed ID: 28336542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CGPS: A machine learning-based approach integrating multiple gene set analysis tools for better prioritization of biologically relevant pathways.
    Ai C; Kong L
    J Genet Genomics; 2018 Sep; 45(9):489-504. PubMed ID: 30292791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BIOFILTER AS A FUNCTIONAL ANNOTATION PIPELINE FOR COMMON AND RARE COPY NUMBER BURDEN.
    Kim D; Lucas A; Glessner J; Verma SS; Bradford Y; Li R; Frase AT; Hakonarson H; Peissig P; Brilliant M; Ritchie MD
    Pac Symp Biocomput; 2016; 21():357-68. PubMed ID: 26776200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mining functionally relevant gene sets for analyzing physiologically novel clinical expression data.
    Turcan S; Vetter DE; Maron JL; Wei X; Slonim DK
    Pac Symp Biocomput; 2011; ():50-61. PubMed ID: 21121032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redundancy control in pathway databases (ReCiPa): an application for improving gene-set enrichment analysis in Omics studies and "Big data" biology.
    Vivar JC; Pemu P; McPherson R; Ghosh S
    OMICS; 2013 Aug; 17(8):414-22. PubMed ID: 23758478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Random forests-based differential analysis of gene sets for gene expression data.
    Hsueh HM; Zhou DW; Tsai CA
    Gene; 2013 Apr; 518(1):179-86. PubMed ID: 23219997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel method for crosstalk analysis of biological networks: improving accuracy of pathway annotation.
    Ogris C; Guala D; Helleday T; Sonnhammer EL
    Nucleic Acids Res; 2017 Jan; 45(2):e8. PubMed ID: 27664219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How to decide which are the most pertinent overly-represented features during gene set enrichment analysis.
    Barriot R; Sherman DJ; Dutour I
    BMC Bioinformatics; 2007 Sep; 8():332. PubMed ID: 17848190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast and Rigorous Computation of Gene and Pathway Scores from SNP-Based Summary Statistics.
    Lamparter D; Marbach D; Rueedi R; Kutalik Z; Bergmann S
    PLoS Comput Biol; 2016 Jan; 12(1):e1004714. PubMed ID: 26808494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study of gene set enrichment methods.
    Abatangelo L; Maglietta R; Distaso A; D'Addabbo A; Creanza TM; Mukherjee S; Ancona N
    BMC Bioinformatics; 2009 Sep; 10():275. PubMed ID: 19725948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests.
    Nguyen TT; Huang J; Wu Q; Nguyen T; Li M
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S5. PubMed ID: 25708662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential regulation enrichment analysis via the integration of transcriptional regulatory network and gene expression data.
    Ma S; Jiang T; Jiang R
    Bioinformatics; 2015 Feb; 31(4):563-71. PubMed ID: 25322838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrative genomics analysis of various omics data and networks identify risk genes and variants vulnerable to childhood-onset asthma.
    Ma X; Wang P; Xu G; Yu F; Ma Y
    BMC Med Genomics; 2020 Aug; 13(1):123. PubMed ID: 32867763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of methods for competitive tests of pathway analysis.
    Evangelou M; Rendon A; Ouwehand WH; Wernisch L; Dudbridge F
    PLoS One; 2012; 7(7):e41018. PubMed ID: 22859961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust Inductive Matrix Completion Strategy to Explore Associations Between LincRNAs and Human Disease Phenotypes.
    Biswas AK; Kim DC; Kang M; Gao JX
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(6):2066-2077. PubMed ID: 29994224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Training set selection for the prediction of essential genes.
    Cheng J; Xu Z; Wu W; Zhao L; Li X; Liu Y; Tao S
    PLoS One; 2014; 9(1):e86805. PubMed ID: 24466248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.