These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 20861160)

  • 41. Prior biological knowledge-based approaches for the analysis of genome-wide expression profiles using gene sets and pathways.
    Wu MC; Lin X
    Stat Methods Med Res; 2009 Dec; 18(6):577-93. PubMed ID: 20048386
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Breeding and Genetics Symposium: building single nucleotide polymorphism-derived gene regulatory networks: Towards functional genomewide association studies.
    Reverter A; Fortes MR
    J Anim Sci; 2013 Feb; 91(2):530-6. PubMed ID: 23097399
    [TBL] [Abstract][Full Text] [Related]  

  • 43. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?
    Veturi Y; Ritchie MD
    Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884
    [TBL] [Abstract][Full Text] [Related]  

  • 44. CPAS: a trans-omics pathway analysis tool for jointly analyzing DNA copy number variations and mRNA expression profiles data.
    Zhang F; Xiao X; Hao J; Wang S; Wen Y; Guo X
    J Biomed Inform; 2015 Feb; 53():363-6. PubMed ID: 25546614
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Learning regulatory programs that accurately predict differential expression with MEDUSA.
    Kundaje A; Lianoglou S; Li X; Quigley D; Arias M; Wiggins CH; Zhang L; Leslie C
    Ann N Y Acad Sci; 2007 Dec; 1115():178-202. PubMed ID: 17934055
    [TBL] [Abstract][Full Text] [Related]  

  • 46. IMPROVED PERFORMANCE OF GENE SET ANALYSIS ON GENOME-WIDE TRANSCRIPTOMICS DATA WHEN USING GENE ACTIVITY STATE ESTIMATES.
    Kamp T; Adams M; Disselkoen C; Tintle N
    Pac Symp Biocomput; 2017; 22():449-460. PubMed ID: 27896997
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pathway analysis using random forests with bivariate node-split for survival outcomes.
    Pang H; Datta D; Zhao H
    Bioinformatics; 2010 Jan; 26(2):250-8. PubMed ID: 19933158
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Using biological networks to integrate, visualize and analyze genomics data.
    Charitou T; Bryan K; Lynn DJ
    Genet Sel Evol; 2016 Mar; 48():27. PubMed ID: 27036106
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An application of Random Forests to a genome-wide association dataset: methodological considerations & new findings.
    Goldstein BA; Hubbard AE; Cutler A; Barcellos LF
    BMC Genet; 2010 Jun; 11():49. PubMed ID: 20546594
    [TBL] [Abstract][Full Text] [Related]  

  • 50. GWAS analyzer: integrating genotype, phenotype and public annotation data for genome-wide association study analysis.
    Fong C; Ko DC; Wasnick M; Radey M; Miller SI; Brittnacher M
    Bioinformatics; 2010 Feb; 26(4):560-4. PubMed ID: 20053839
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Large-scale genome-wide enrichment analyses identify new trait-associated genes and pathways across 31 human phenotypes.
    Zhu X; Stephens M
    Nat Commun; 2018 Oct; 9(1):4361. PubMed ID: 30341297
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Gene set enrichment analysis: performance evaluation and usage guidelines.
    Hung JH; Yang TH; Hu Z; Weng Z; DeLisi C
    Brief Bioinform; 2012 May; 13(3):281-91. PubMed ID: 21900207
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Network expansion and pathway enrichment analysis towards biologically significant findings from microarrays.
    Wu X; Huang H; Wei T; Pandey R; Reinhard C; Li SD; Chen JY
    J Integr Bioinform; 2012 Oct; 9(2):213. PubMed ID: 23079560
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Machine learning approaches for the discovery of gene-gene interactions in disease data.
    Upstill-Goddard R; Eccles D; Fliege J; Collins A
    Brief Bioinform; 2013 Mar; 14(2):251-60. PubMed ID: 22611119
    [TBL] [Abstract][Full Text] [Related]  

  • 55. BrowserGenome.org: web-based RNA-seq data analysis and visualization.
    Schmid-Burgk JL; Hornung V
    Nat Methods; 2015 Nov; 12(11):1001. PubMed ID: 26513548
    [No Abstract]   [Full Text] [Related]  

  • 56. Next generation sequencing technology and genomewide data analysis: Perspectives for retinal research.
    Chaitankar V; Karakülah G; Ratnapriya R; Giuste FO; Brooks MJ; Swaroop A
    Prog Retin Eye Res; 2016 Nov; 55():1-31. PubMed ID: 27297499
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Exploring patterns of epigenetic information with data mining techniques.
    Aguiar-Pulido V; Seoane JA; Gestal M; Dorado J
    Curr Pharm Des; 2013; 19(4):779-89. PubMed ID: 23016855
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Machine learning techniques to examine large patient databases.
    Meyfroidt G; Güiza F; Ramon J; Bruynooghe M
    Best Pract Res Clin Anaesthesiol; 2009 Mar; 23(1):127-43. PubMed ID: 19449621
    [TBL] [Abstract][Full Text] [Related]  

  • 59. BOOST: A fast approach to detecting gene-gene interactions in genome-wide case-control studies.
    Wan X; Yang C; Yang Q; Xue H; Fan X; Tang NL; Yu W
    Am J Hum Genet; 2010 Sep; 87(3):325-40. PubMed ID: 20817139
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reproducibility enhancement and differential expression of non predefined functional gene sets in human genome.
    da Silva SR; Perrone GC; Dinis JM; de Almeida RM
    BMC Genomics; 2014 Dec; 15(1):1181. PubMed ID: 25539829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.