These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 20861945)

  • 1. Azo polymers for reversible optical storage. Ill. Effect of film thickness on net phase retardation and writing speed.
    Rochon P; Bissonnette D; Natansohn A; Xie S
    Appl Opt; 1993 Dec; 32(35):7277-80. PubMed ID: 20861945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photomodulation of the chiroptical properties of new chiral methacrylic polymers with side chain azobenzene moieties.
    Angiolini L; Bozio R; Giorgini L; Pedron D; Turco G; Daurù A
    Chemistry; 2002 Sep; 8(18):4241-7. PubMed ID: 12298015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature modeling of laser-irradiated azo-polymer thin films.
    Yager KG; Barrett CJ
    J Chem Phys; 2004 Jan; 120(2):1089-96. PubMed ID: 15267945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of the optical response of phase-change recording layer with zinc oxide nanostructured thin film.
    Kao TS; Fu YH; Hsu HW; Tsai DP
    J Microsc; 2008 Mar; 229(Pt 3):561-6. PubMed ID: 18331511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interference effects in the sum frequency generation spectra of thin organic films. I. Theoretical modeling and simulation.
    Tong Y; Zhao Y; Li N; Osawa M; Davies PB; Ye S
    J Chem Phys; 2010 Jul; 133(3):034704. PubMed ID: 20649347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of film thickness on the phase separation mechanism in ultrathin conducting polymer blend films.
    Meier R; Ruderer MA; Diethert A; Kaune G; Körstgens V; Roth SV; Müller-Buschbaum P
    J Phys Chem B; 2011 Mar; 115(12):2899-909. PubMed ID: 21370827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A photorefractive organically modified silica glass with high optical gain.
    Cheben P; del Monte F; Worsfold DJ; Carlsson DJ; Grover CP; Mackenzie JD
    Nature; 2000 Nov; 408(6808):64-7. PubMed ID: 11081505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-relief gratings and photoinduced birefringence in layer-by-layer films of chitosan and an azopolymer.
    Camilo CS; dos Santos Júnior DS; Rodrigues Júnior JJ; Vega ML; Campana Filho SP; Oliveira Júnior ON; Mendonça CR
    Biomacromolecules; 2003; 4(6):1583-8. PubMed ID: 14606883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of bragg gratings with large angular multiplicity by means of the photoinduced reorientation of azobenzene copolymers.
    Saishoji A; Sato D; Shishido A; Ikeda T
    Langmuir; 2007 Jan; 23(1):320-6. PubMed ID: 17190521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical factors in the photoemission of thin films.
    Ramberg EG
    Appl Opt; 1967 Dec; 6(12):2163-70. PubMed ID: 20062380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Second-harmonic generation in an optically poled azo-dye/polymer film.
    Wang Y; Tai OY; Wang CH
    J Chem Phys; 2005 Oct; 123(16):164704. PubMed ID: 16268719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the high performance of photoinduced birefringence in V-shaped azo/PMMA guest-host films.
    Silva LM; Silva DL; Boas MV; Bretonniere Y; Andraud C; Vivas MG
    RSC Adv; 2020 Nov; 10(67):40806-40814. PubMed ID: 35519213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bragg-type polarization gratings formed in thick polymer films containing azobenzene and tolane moieties.
    Ishiguro M; Sato D; Shishido A; Ikeda T
    Langmuir; 2007 Jan; 23(1):332-8. PubMed ID: 17190523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immobilization of glucose oxidase in thin polypyrrole films: influence of polymerization conditions and film thickness on the activity and stability of the immobilized enzyme.
    Almeida NF; Beckman EJ; Ataai MM
    Biotechnol Bioeng; 1993 Nov; 42(9):1037-45. PubMed ID: 18613231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring glassy and viscoelastic polymer flow in molecular-scale gaps using a flat punch mechanical probe.
    Rowland HD; King WP; Cross GL; Pethica JB
    ACS Nano; 2008 Mar; 2(3):419-28. PubMed ID: 19206565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pure optical nano-writing on light- switchable spiropyrans/merocyanine thin film.
    Triolo C; Patanè S; Mazzeo M; Gambino S; Gigli G; Allegrini M
    Opt Express; 2014 Jan; 22(1):283-8. PubMed ID: 24514989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrically tunable birefringence of a polymer composite with long-range orientational ordering of liquid crystals.
    Choi B; Song S; Jeong SM; Chung SH; Glushchenko A
    Opt Express; 2014 Jul; 22(15):18027-35. PubMed ID: 25089422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrophobic switching nature of methylcellulose ultra-thin films: thickness and annealing effects.
    Innis-Samson VA; Sakurai K
    J Phys Condens Matter; 2011 Nov; 23(43):435010. PubMed ID: 21983327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical storage and surface-relief gratings in azobenzene-containing nanostructured films.
    Oliveira ON; Dos Santos DS; Balogh DT; Zucolotto V; Mendonça CR
    Adv Colloid Interface Sci; 2005 Nov; 116(1-3):179-92. PubMed ID: 16257385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fast real time measurement system to track in and out of plane optical retardation/ birefringence, true stress, and true strain during biaxial stretching of polymer films.
    Cakmak M; Hassan M; Unsal E; Martins C
    Rev Sci Instrum; 2012 Dec; 83(12):123901. PubMed ID: 23277999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.