These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 20862)

  • 1. Dependence of sulphate uptake by Anacystis nidulans on energy, on osmotic shock and on sulphate stravation.
    Jeanjean R; Broda E
    Arch Microbiol; 1977 Jul; 114(1):19-23. PubMed ID: 20862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulphate uptake and metabolism in the chrysomonad, monochrysis lutheri.
    Deane EM; O'Brien RW
    Arch Microbiol; 1975 Nov; 105(3):295-301. PubMed ID: 1190958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vanadate and dicyclohexylcarbodiimide insensitive proton extrusion from oxygen pulsed cells of the cyanobacterium Anacystis nidulans.
    Nitschmann WH; Peschek GA
    Biochem Biophys Res Commun; 1984 Aug; 123(1):358-64. PubMed ID: 6433918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selenite uptake and incorporation by Selenomonas ruminantium.
    Hudman JF; Glenn AR
    Arch Microbiol; 1984 Dec; 140(2-3):252-6. PubMed ID: 6442129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacteriophage infection interferes with guanosine 3'-diphosphate-5'-diphosphate accumulation induced by energy and nitrogen starvation in the cyanobacterium Anacystis nidulans.
    Borbély G; Kaki C; Gulyás A; Farkas GL
    J Bacteriol; 1980 Dec; 144(3):859-64. PubMed ID: 6777368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of some environmental factors on cyanophage AS-1 development in Anacystis nidulans.
    Allen MM; Hutchison F
    Arch Microbiol; 1976 Oct; 110(1):55-60. PubMed ID: 828019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino acid uptake and energy coupling dependent on photosynthesis in Anacystis nidulans.
    Lee-Kaden J; Simonis W
    J Bacteriol; 1982 Jul; 151(1):229-36. PubMed ID: 6806240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endogenous energy supply to the plasma membrane of dark aerobic cyanobacterium Anacystis nidulans: ATPase-independent efflux of H+ and Na+ from respiring cells.
    Erber WW; Nitschmann WH; Muchl R; Peschek GA
    Arch Biochem Biophys; 1986 May; 247(1):28-39. PubMed ID: 3010878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal conditions for genetic transformation of the cyanobacterium Anacystis nidulans R2.
    Golden SS; Sherman LA
    J Bacteriol; 1984 Apr; 158(1):36-42. PubMed ID: 6425267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerobic hydrogenase activity in Anacystis nidulans. The oxyhydrogen reaction.
    Peschek GA
    Biochim Biophys Acta; 1979 Nov; 548(2):203-15. PubMed ID: 116680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy transduction in the mitochondrionlike bacterium Paracoccus denitrificans during carbon- or sulphate-limited aerobic growth in continuous culture.
    Lawford HG
    Can J Biochem; 1978 Jan; 56(1):13-22. PubMed ID: 36970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy and calcium ion dependence of proteolysis during sporulation of Bacillus subtilis cells.
    O'Hara MB; Hageman JH
    J Bacteriol; 1990 Aug; 172(8):4161-70. PubMed ID: 2115863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of internal pH in cells of blue-green algae in the dark and under illumination.
    Masamoto K; Nishimura M
    J Biochem; 1977 Aug; 82(2):483-7. PubMed ID: 72067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetate uptake by the unicellular cyanobacteria Synechococcus and Aphanocapsa.
    Ihlenfeldt MJ; Gibson J
    Arch Microbiol; 1977 Jun; 113(3):231-41. PubMed ID: 18124
    [No Abstract]   [Full Text] [Related]  

  • 15. Passive entry of CO2 and its energy-dependent intracellular conversion to HCO3- in cyanobacteria are driven by a photosystem I-generated deltamuH+.
    Tchernov D; Helman Y; Keren N; Luz B; Ohad I; Reinhold L; Ogawa T; Kaplan A
    J Biol Chem; 2001 Jun; 276(26):23450-5. PubMed ID: 11297562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for proton motive force dependent transport of selenite by Clostridium pasteurianum.
    Bryant RD; Laishley EJ
    Can J Microbiol; 1989 Apr; 35(4):481-6. PubMed ID: 2743219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the transport of potassium ions in the cyanobacterium Anabaena variabilis Kütz.
    Reed RH; Rowell P; Stewart WD
    Eur J Biochem; 1981 May; 116(2):323-30. PubMed ID: 6788551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy coupling in the active transport of proline and glutamate by the photosynthetic halophile Ectothiorhodospira halophila.
    Rinehart CA; Hubbard JS
    J Bacteriol; 1976 Sep; 127(3):1255-64. PubMed ID: 956126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sodium chloride stimulated respiration of Anacystis nidulans.
    Paschinger H
    Z Allg Mikrobiol; 1977; 17(5):373-9. PubMed ID: 412332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of intracellular pH and proton-potassium exchange in fermenting Escherichia coli grown anaerobically in alkaline medium.
    Trchounian A; Ohanjayan E; Zakharyan E
    Membr Cell Biol; 1998; 12(1):67-78. PubMed ID: 9829260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.