These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

46 related articles for article (PubMed ID: 20862045)

  • 1. Use of tabulated cumulative density functions to generate pseudorandom numbers obeying specific distributions for Monte Carlo simulations.
    R Zijp J; Bosch JJ
    Appl Opt; 1994 Jan; 33(3):533-4. PubMed ID: 20862045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yet another application of the Monte Carlo method for modeling in the field of biomedicine.
    Cassia-Moura R; Sousa CS; Ramos AD; Coelho LC; Valença MM
    Comput Methods Programs Biomed; 2005 Jun; 78(3):223-35. PubMed ID: 15899307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of the Monte Carlo code for modeling of photon migration in tissue.
    Zołek NS; Liebert A; Maniewski R
    Comput Methods Programs Biomed; 2006 Oct; 84(1):50-7. PubMed ID: 16962201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of flux distributions with Monte Carlo functional expansion tallies.
    Griesheimer DP; Martin WR; Holloway JP
    Radiat Prot Dosimetry; 2005; 115(1-4):428-32. PubMed ID: 16381761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decomposition of a laser-Doppler spectrum for estimation of speed distribution of particles moving in an optically turbid medium: Monte Carlo validation study.
    Liebert A; Zołek N; Maniewski R
    Phys Med Biol; 2006 Nov; 51(22):5737-51. PubMed ID: 17068362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Condensed Monte Carlo simulations for the description of light transport.
    Graaff R; Koelink MH; de Mul FF; Zijistra WG; Dassel AC; Aarnoudse JG
    Appl Opt; 1993 Feb; 32(4):426-34. PubMed ID: 20802708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reverse Monte Carlo simulations, Raman scattering, and thermal studies of an amorphous Ge30Se70 alloy produced by mechanical alloying.
    Machado KD; de Lima JC; Campos CE; Grandi TA; Pizani PS
    J Chem Phys; 2004 Jan; 120(1):329-36. PubMed ID: 15267293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comment on 'the use of the Henyey-Greenstein phase function in Monte Carlo simulations in biomedical optics'.
    Binzoni T; Leung TS; Gandjbakhche AH; Rüfenacht D; Delpy DT
    Phys Med Biol; 2006 Nov; 51(22):L39-41. PubMed ID: 17068360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depolarization of light in turbid media: a scattering event resolved Monte Carlo study.
    Guo X; Wood MF; Ghosh N; Vitkin IA
    Appl Opt; 2010 Jan; 49(2):153-62. PubMed ID: 20062501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short communication: selecting input distributions for use in Monte Carlo simulations.
    Lipton J; Shaw WD; Holmes J; Patterson A
    Regul Toxicol Pharmacol; 1995 Feb; 21(1):192-8. PubMed ID: 7784631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial and angular distribution of light incident on coatings using Mie-scattering Monte Carlo simulations.
    Yamada M; Butts MD; Kalla KK
    J Cosmet Sci; 2005; 56(3):193-204. PubMed ID: 16116524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo methods in clinical research: applications in multivariable analysis.
    Concato J; Feinstein AR
    J Investig Med; 1997 Aug; 45(6):394-400. PubMed ID: 9291696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An investigation of backscatter factors for kilovoltage x-rays: a comparison between Monte Carlo simulations and Gafchromic EBT film measurements.
    Kim J; Hill R; Claridge Mackonis E; Kuncic Z
    Phys Med Biol; 2010 Feb; 55(3):783-97. PubMed ID: 20071763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interpreting size-exclusion data for highly branched biopolymers by reverse monte carlo simulations.
    Watts CJ; Gray-Weale A; Gilbert RG
    Biomacromolecules; 2007 Feb; 8(2):455-63. PubMed ID: 17291069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modification of Monte Carlo codes for use with sharply peaked phase functions.
    Walker PL
    Appl Opt; 1993 May; 32(15):2730-3. PubMed ID: 20820435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Na+ and Mg2+ on the structures of supercoiled DNAs: comparison of simulations with experiments.
    Gebe JA; Delrow JJ; Heath PJ; Fujimoto BS; Stewart DW; Schurr JM
    J Mol Biol; 1996 Sep; 262(2):105-28. PubMed ID: 8831783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probabilistic model of multiple light scattering based on rigorous computation of the first and the second moments of photon coordinates.
    Kolinko VG; de Mul FF; Greve J; Priezzhev AV
    Appl Opt; 1996 Aug; 35(22):4541-50. PubMed ID: 21102873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Density-functional theory and Monte Carlo simulation study on the electric double layer around DNA in mixed-size counterion systems.
    Wang K; Yu YX; Gao GH; Luo GS
    J Chem Phys; 2005 Dec; 123(23):234904. PubMed ID: 16392946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fifty years of Monte Carlo simulations for medical physics.
    Rogers DW
    Phys Med Biol; 2006 Jul; 51(13):R287-301. PubMed ID: 16790908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of statistical uncertainties on Monte Carlo treatment planning.
    Ma CM; Li JS; Jiang SB; Pawlicki T; Xiong W; Qin LH; Yang J
    Phys Med Biol; 2005 Mar; 50(5):891-907. PubMed ID: 15798263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.