These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 20862053)

  • 21. Confocal microscopy in biomedical research.
    Rigby PJ; Goldie RG
    Croat Med J; 1999 Sep; 40(3):346-52. PubMed ID: 10411961
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fast 3-D Imaging of Brain Organoids With a New Single-Objective Planar-Illumination Two-Photon Microscope.
    Rakotoson I; Delhomme B; Djian P; Deeg A; Brunstein M; Seebacher C; Uhl R; Ricard C; Oheim M
    Front Neuroanat; 2019; 13():77. PubMed ID: 31481880
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Use of confocal microscopy in comparative studies of vertebrate morphology.
    Collazo A; Bricaud O; Desai K
    Methods Enzymol; 2005; 395():521-43. PubMed ID: 15865982
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prospects for 3D, nanometer-resolution imaging by confocal STEM.
    Einspahr JJ; Voyles PM
    Ultramicroscopy; 2006; 106(11-12):1041-52. PubMed ID: 16916585
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Methods for imaging thick specimens: confocal microscopy, deconvolution, and structured illumination.
    Murray JM
    Cold Spring Harb Protoc; 2011 Dec; 2011(12):1399-437. PubMed ID: 22135661
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single-cell resolution fluorescence imaging of circadian rhythms detected with a Nipkow spinning disk confocal system.
    Enoki R; Ono D; Hasan MT; Honma S; Honma K
    J Neurosci Methods; 2012 May; 207(1):72-9. PubMed ID: 22480987
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Microbeads and nanobeads in microscopy: a tool for spatial, spectral and dynamic settings. Application to molecular co-localization].
    Kahn E
    Ann Biol Clin (Paris); 2004; 62(1):79-83. PubMed ID: 15047495
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced 3-D reconstruction from confocal scanning microscope images. 1: Deterministic and maximum likelihood reconstructions.
    Conchello JA; Hansen EW
    Appl Opt; 1990 Sep; 29(26):3795-804. PubMed ID: 20567486
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics.
    Hayashi S; Okada Y
    Mol Biol Cell; 2015 May; 26(9):1743-51. PubMed ID: 25717185
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Minimizing light exposure with the programmable array microscope.
    Caarls W; Rieger B; De Vries AH; Arndt-Jovin DJ; Jovin TM
    J Microsc; 2011 Jan; 241(1):101-10. PubMed ID: 21118211
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-dimensional imaging and image analysis of hippocampal neurons: confocal and digitally enhanced wide field microscopy.
    Turner JN; Szarowski DH; Turner TJ; Ancin H; Lin WC; Roysam B; Holmes TJ
    Microsc Res Tech; 1994 Nov; 29(4):269-78. PubMed ID: 7841499
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-dimensional point spread function model for line-scanning confocal microscope with high-aperture objective.
    Dusch E; Dorval T; Vincent N; Wachsmuth M; Genovesio A
    J Microsc; 2007 Nov; 228(Pt 2):132-8. PubMed ID: 17970913
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two-colour two-photon confocal microscopy with isotropic three-dimensional resolution and parallel excitation.
    Ni J; Qiao L; Wang C; Zhao F; Cheng Y; Xu Z
    J Microsc; 2009 May; 234(2):205-10. PubMed ID: 19397749
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-dimensional specimen reconstruction by confocal microscopy and digital image processing.
    Carlsson K
    Bull Assoc Anat (Nancy); 1991 Jun; 75(229):105-8. PubMed ID: 1777694
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Confocal microscopy and three-dimensional reconstruction of thick, transparent, vital tissue.
    Masters BR
    Scanning Microsc Suppl; 1992; 6():71-9. PubMed ID: 1366341
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Superresolution and convergence properties of the expectation-maximization algorithm for maximum-likelihood deconvolution of incoherent images.
    Conchello JA
    J Opt Soc Am A Opt Image Sci Vis; 1998 Oct; 15(10):2609-19. PubMed ID: 9768508
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Real complete three-dimensional reconstruction of Golgi-impregnated neurons by means of a confocal laser scanning microscope.
    Tredici G; Di Francesco A; Miani A; Pizzini G
    Neuroimage; 1993 Sep; 1(2):87-93. PubMed ID: 9343560
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental demonstration of an optical-sectioning compressive sensing microscope (CSM).
    Wu Y; Ye P; Mirza IO; Arce GR; Prather DW
    Opt Express; 2010 Nov; 18(24):24565-78. PubMed ID: 21164803
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Scanning confocal electron energy-loss microscopy using valence-loss signals.
    Xin HL; Dwyer C; Muller DA; Zheng H; Ercius P
    Microsc Microanal; 2013 Aug; 19(4):1036-49. PubMed ID: 23692691
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Laser scanning fluorescence microscopy.
    Ploem JS
    Appl Opt; 1987 Aug; 26(16):3226-31. PubMed ID: 20490047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.