These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 20862441)

  • 1. Supramolecular hydrogel-based protein and chemosensor array.
    Ikeda M; Ochi R; Hamachi I
    Lab Chip; 2010 Dec; 10(24):3325-34. PubMed ID: 20862441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three distinct read-out modes for enzyme activity can operate in a semi-wet supramolecular hydrogel.
    Tamaru S; Kiyonaka S; Hamachi I
    Chemistry; 2005 Dec; 11(24):7294-304. PubMed ID: 16196071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semi-wet peptide/protein array using supramolecular hydrogel.
    Kiyonaka S; Sada K; Yoshimura I; Shinkai S; Kato N; Hamachi I
    Nat Mater; 2004 Jan; 3(1):58-64. PubMed ID: 14661016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular recognition in a supramolecular hydrogel to afford a semi-wet sensor chip.
    Yoshimura I; Miyahara Y; Kasagi N; Yamane H; Ojida A; Hamachi I
    J Am Chem Soc; 2004 Oct; 126(39):12204-5. PubMed ID: 15453719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooperation between artificial receptors and supramolecular hydrogels for sensing and discriminating phosphate derivatives.
    Yamaguchi S; Yoshimura I; Kohira T; Tamaru S; Hamachi I
    J Am Chem Soc; 2005 Aug; 127(33):11835-41. PubMed ID: 16104762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic hydrogelation of small molecules.
    Yang Z; Liang G; Xu B
    Acc Chem Res; 2008 Feb; 41(2):315-26. PubMed ID: 18205323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MCM-enzyme-supramolecular hydrogel hybrid as a fluorescence sensing material for polyanions of biological significance.
    Wada A; Tamaru S; Ikeda M; Hamachi I
    J Am Chem Soc; 2009 Apr; 131(14):5321-30. PubMed ID: 19351208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional encapsulation of live cells by using a hybrid matrix of nanoparticles in a supramolecular hydrogel.
    Ikeda M; Ueno S; Matsumoto S; Shimizu Y; Komatsu H; Kusumoto K; Hamachi I
    Chemistry; 2008; 14(34):10808-15. PubMed ID: 18942699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fluorescent lectin array using supramolecular hydrogel for simple detection and pattern profiling for various glycoconjugates.
    Koshi Y; Nakata E; Yamane H; Hamachi I
    J Am Chem Soc; 2006 Aug; 128(32):10413-22. PubMed ID: 16895406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of sensitivity of SPR protein microarray using a novel 3D protein immobilization.
    Tanaka H; Hanasaki M; Isojima T; Takeuchi H; Shiroya T; Kawaguchi H
    Colloids Surf B Biointerfaces; 2009 May; 70(2):259-65. PubMed ID: 19201170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a silica-based double-network hydrogel for high-throughput screening of encapsulated enzymes.
    Kato M; Shoda N; Yamamoto T; Shiratori R; Toyo'oka T
    Analyst; 2009 Mar; 134(3):577-81. PubMed ID: 19238296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfactant-stabilized small hydrogel particles in oil: hosts for remarkable activation of enzymes in organic solvents.
    Das D; Roy S; Debnath S; Das PK
    Chemistry; 2010 Apr; 16(16):4911-22. PubMed ID: 20229535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The in vivo performance of an enzyme-assisted self-assembled peptide/protein hydrogel.
    Williams RJ; Hall TE; Glattauer V; White J; Pasic PJ; Sorensen AB; Waddington L; McLean KM; Currie PD; Hartley PG
    Biomaterials; 2011 Aug; 32(22):5304-10. PubMed ID: 21531457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly of peptide-amphiphile forming helical nanofibers and in situ template synthesis of uniform mesoporous single wall silica nanotubes.
    Ahmed S; Mondal JH; Behera N; Das D
    Langmuir; 2013 Nov; 29(46):14274-83. PubMed ID: 24128085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose responsive hydrogel networks based on protein recognition.
    Ehrick JD; Luckett MR; Khatwani S; Wei Y; Deo SK; Bachas LG; Daunert S
    Macromol Biosci; 2009 Sep; 9(9):864-8. PubMed ID: 19434674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of a surface imprinted hydrogel shell over silica microspheres using bovine serum albumin as a model protein template.
    Hua Z; Zhou S; Zhao M
    Biosens Bioelectron; 2009 Nov; 25(3):615-22. PubMed ID: 19230646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic biosensor based on an array of hydrogel-entrapped enzymes.
    Heo J; Crooks RM
    Anal Chem; 2005 Nov; 77(21):6843-51. PubMed ID: 16255581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stiff, multistimuli-responsive supramolecular hydrogels as unique molds for 2D/3D microarchitectures of live cells.
    Komatsu H; Tsukiji S; Ikeda M; Hamachi I
    Chem Asian J; 2011 Sep; 6(9):2368-75. PubMed ID: 21721133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein biosensors based on the principle of fluorescence resonance energy transfer for monitoring cellular dynamics.
    Li IT; Pham E; Truong K
    Biotechnol Lett; 2006 Dec; 28(24):1971-82. PubMed ID: 17021660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aldehyde responsive supramolecular hydrogels: towards biomarker-specific delivery systems.
    Rodríguez-Llansola F; Miravet JF; Escuder B
    Chem Commun (Camb); 2011 Apr; 47(16):4706-8. PubMed ID: 21416091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.