These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 20862457)

  • 21. Uncontrolled manifold hypothesis: Organization of leg joint variance in humans while walking in a wide range of speeds.
    Monaco V; Tropea P; Rinaldi LA; Micera S
    Hum Mov Sci; 2018 Feb; 57():227-235. PubMed ID: 28939197
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of gait speed on the control of mediolateral dynamic stability during gait initiation.
    Caderby T; Yiou E; Peyrot N; Begon M; Dalleau G
    J Biomech; 2014 Jan; 47(2):417-23. PubMed ID: 24290175
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Persistence of motor-equivalent postural fluctuations during bipedal quiet standing.
    Verrel J; Pradon D; Vuillerme N
    PLoS One; 2012; 7(10):e48312. PubMed ID: 23110228
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Energy cost of balance control during walking decreases with external stabilizer stiffness independent of walking speed.
    Ijmker T; Houdijk H; Lamoth CJ; Beek PJ; van der Woude LH
    J Biomech; 2013 Sep; 46(13):2109-14. PubMed ID: 23895896
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of anteroposterior perturbations on the control of the center of mass during treadmill walking.
    van den Bogaart M; Bruijn SM; van Dieën JH; Meyns P
    J Biomech; 2020 Apr; 103():109660. PubMed ID: 32171496
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Active control of lateral balance in human walking.
    Bauby CE; Kuo AD
    J Biomech; 2000 Nov; 33(11):1433-40. PubMed ID: 10940402
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Can optical flow perturbations detect walking balance impairment in people with multiple sclerosis?
    Selgrade BP; Meyer D; Sosnoff JJ; Franz JR
    PLoS One; 2020; 15(3):e0230202. PubMed ID: 32155225
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanical and metabolic requirements for active lateral stabilization in human walking.
    Donelan JM; Shipman DW; Kram R; Kuo AD
    J Biomech; 2004 Jun; 37(6):827-35. PubMed ID: 15111070
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accuracy of the Microsoft Kinect for measuring gait parameters during treadmill walking.
    Xu X; McGorry RW; Chou LS; Lin JH; Chang CC
    Gait Posture; 2015 Jul; 42(2):145-51. PubMed ID: 26002604
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Treadmill-gait slip training in community-dwelling older adults: mechanisms of immediate adaptation for a progressive ascending-mixed-intensity protocol.
    Wang Y; Wang S; Lee A; Pai YC; Bhatt T
    Exp Brain Res; 2019 Sep; 237(9):2305-2317. PubMed ID: 31286173
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Does increased gait variability improve stability when faced with an expected balance perturbation during treadmill walking?
    Nestico J; Novak A; Perry SD; Mansfield A
    Gait Posture; 2021 May; 86():94-100. PubMed ID: 33711616
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensitivity of dynamic stability to changes in step width during treadmill walking by young adults.
    Rosenblatt NJ; Hurt CP; Grabiner MD
    J Appl Biomech; 2012 Nov; 28(5):616-21. PubMed ID: 22661014
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reproducibility of gait parameters at different surface inclinations and speeds using an instrumented treadmill system.
    Item-Glatthorn JF; Casartelli NC; Maffiuletti NA
    Gait Posture; 2016 Feb; 44():259-64. PubMed ID: 27004668
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel velocity estimation for symmetric and asymmetric self-paced treadmill training.
    Canete S; Jacobs DA
    J Neuroeng Rehabil; 2021 Feb; 18(1):27. PubMed ID: 33546729
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Variability of spatial temporal gait parameters and center of pressure displacements during gait in elderly fallers and nonfallers: A 6-month prospective study.
    Svoboda Z; Bizovska L; Janura M; Kubonova E; Janurova K; Vuillerme N
    PLoS One; 2017; 12(2):e0171997. PubMed ID: 28241008
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A robust machine learning enabled decomposition of shear ground reaction forces during the double contact phase of walking.
    Bastien GJ; Gosseye TP; Penta M
    Gait Posture; 2019 Sep; 73():221-227. PubMed ID: 31374439
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Does variability of footfall kinematics correlate with dynamic stability of the centre of mass during walking?
    König Ignasiak N; Ravi DK; Orter S; Hosseini Nasab SH; Taylor WR; Singh NB
    PLoS One; 2019; 14(5):e0217460. PubMed ID: 31150452
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Post-Stroke Adaptation of Lateral Foot Placement Coordination in Variable Environments.
    Dragunas AC; Cornwell T; Lopez-Rosado R; Gordon KE
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():731-739. PubMed ID: 33835919
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Does the margin of stability measure predict medio-lateral stability of gait with a constrained-width base of support?
    Gill L; Huntley AH; Mansfield A
    J Biomech; 2019 Oct; 95():109317. PubMed ID: 31466717
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinematic and ground reaction force accommodation during weighted walking.
    James CR; Atkins LT; Yang HS; Dufek JS; Bates BT
    Hum Mov Sci; 2015 Dec; 44():327-37. PubMed ID: 26540454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.