BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 20862610)

  • 1. Measurement of contractile forces generated by individual fibroblasts on self-standing fiber scaffolds.
    Jeon H; Kim E; Grigoropoulos CP
    Biomed Microdevices; 2011 Feb; 13(1):107-15. PubMed ID: 20862610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Some comments on 'Measurement of contractile forces generated by individual fibroblasts on self-standing fiber scaffolds' by Jeon et al. 2011.
    Subramanian SJ
    Biomed Microdevices; 2014 Oct; 16(5):671-2. PubMed ID: 24894075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new technique for calculating individual dermal fibroblast contractile forces generated within collagen-GAG scaffolds.
    Harley BA; Freyman TM; Wong MQ; Gibson LJ
    Biophys J; 2007 Oct; 93(8):2911-22. PubMed ID: 17586570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-standing aligned fiber scaffold fabrication by two photon photopolymerization.
    Hidai H; Jeon H; Hwang DJ; Grigoropoulos CP
    Biomed Microdevices; 2009 Jun; 11(3):643-52. PubMed ID: 19130241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell contraction forces in scaffolds with varying pore size and cell density.
    Corin KA; Gibson LJ
    Biomaterials; 2010 Jun; 31(18):4835-45. PubMed ID: 20362329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contractile cell forces deform macroscopic cantilevers and quantify biomaterial performance.
    Allenstein U; Mayr SG; Zink M
    Soft Matter; 2015 Jul; 11(25):5053-9. PubMed ID: 26027952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanics of cell spreading within 3D-micropatterned environments.
    Ghibaudo M; Di Meglio JM; Hersen P; Ladoux B
    Lab Chip; 2011 Mar; 11(5):805-12. PubMed ID: 21132213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative Analysis of Myofibroblast Contraction by Traction Force Microscopy.
    Yang S; Valencia FR; Sabass B; Plotnikov SV
    Methods Mol Biol; 2021; 2299():181-195. PubMed ID: 34028744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved regeneration potential of fibroblasts using ascorbic acid-blended nanofibrous scaffolds.
    Sridhar S; Venugopal JR; Ramakrishna S
    J Biomed Mater Res A; 2015 Nov; 103(11):3431-40. PubMed ID: 25903719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction and characterization of an electrospun tubular scaffold for small-diameter tissue-engineered vascular grafts: a scaffold membrane approach.
    Hu JJ; Chao WC; Lee PY; Huang CH
    J Mech Behav Biomed Mater; 2012 Sep; 13():140-55. PubMed ID: 22854316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of electrospun HPGL scaffolds via glycidyl methacrylate cross-linker: Morphology, mechanical and biological properties.
    Baratéla FJC; Higa OZ; Dos Passos ED; de Queiroz AAA
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():72-79. PubMed ID: 28183666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Establishing correlations in the en-mass migration of dermal fibroblasts on oriented fibrillar scaffolds.
    Qin S; Clark RA; Rafailovich MH
    Acta Biomater; 2015 Oct; 25():230-9. PubMed ID: 26117312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning electrospinning parameters for production of 3D-fiber-fleeces with increased porosity for soft tissue engineering applications.
    Milleret V; Simona B; Neuenschwander P; Hall H
    Eur Cell Mater; 2011 Mar; 21():286-303. PubMed ID: 21432783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds.
    Vatankhah E; Semnani D; Prabhakaran MP; Tadayon M; Razavi S; Ramakrishna S
    Acta Biomater; 2014 Feb; 10(2):709-21. PubMed ID: 24075888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mathematical model for the determination of forming tissue moduli in needled-nonwoven scaffolds.
    Soares JS; Zhang W; Sacks MS
    Acta Biomater; 2017 Mar; 51():220-236. PubMed ID: 28063987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulus of elasticity of randomly and aligned polymeric scaffolds with fiber size dependency.
    Wang J; Yuan B; Han RPS
    J Mech Behav Biomed Mater; 2018 Jan; 77():314-320. PubMed ID: 28961518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between cell stiffness and stress fiber amount, assessed by simultaneous atomic force microscopy and live-cell fluorescence imaging.
    Gavara N; Chadwick RS
    Biomech Model Mechanobiol; 2016 Jun; 15(3):511-23. PubMed ID: 26206449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subcellular stretch-induced cytoskeletal response of single fibroblasts within 3D designer scaffolds.
    Scheiwe AC; Frank SC; Autenrieth TJ; Bastmeyer M; Wegener M
    Biomaterials; 2015 Mar; 44():186-94. PubMed ID: 25617137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of Interfacial Adhesion Force with a 3D-Printed Fiber-Tip Microforce Sensor.
    Zou M; Liao C; Chen Y; Gan Z; Liu S; Liu D; Liu L; Wang Y
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfabrication of a platform to measure and manipulate the mechanics of engineered microtissues.
    Ramade A; Legant WR; Picart C; Chen CS; Boudou T
    Methods Cell Biol; 2014; 121():191-211. PubMed ID: 24560511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.