These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 20863128)

  • 1. Minor-groove-modulating adenosine replacements control protein binding and RNAi activity in siRNAs.
    Peacock H; Fostvedt E; Beal PA
    ACS Chem Biol; 2010 Dec; 5(12):1115-24. PubMed ID: 20863128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling activation of the RNA-dependent protein kinase by siRNAs using site-specific chemical modification.
    Puthenveetil S; Whitby L; Ren J; Kelnar K; Krebs JF; Beal PA
    Nucleic Acids Res; 2006; 34(17):4900-11. PubMed ID: 16982647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amide-Modified RNA: Using Protein Backbone to Modulate Function of Short Interfering RNAs.
    Kotikam V; Rozners E
    Acc Chem Res; 2020 Sep; 53(9):1782-1790. PubMed ID: 32658452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Promiscuous 8-alkoxyadenosines in the guide strand of an siRNA: modulation of silencing efficacy and off-pathway protein binding.
    Ghanty U; Fostvedt E; Valenzuela R; Beal PA; Burrows CJ
    J Am Chem Soc; 2012 Oct; 134(42):17643-52. PubMed ID: 23030736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 8-Oxoguanosine switches modulate the activity of alkylated siRNAs by controlling steric effects in the major versus minor grooves.
    Kannan A; Fostvedt E; Beal PA; Burrows CJ
    J Am Chem Soc; 2011 Apr; 133(16):6343-51. PubMed ID: 21452817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recognition of double-stranded RNA by proteins and small molecules.
    Carlson CB; Stephens OM; Beal PA
    Biopolymers; 2003 Sep; 70(1):86-102. PubMed ID: 12925995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of asymmetric terminal structures of short RNA duplexes on the RNA interference activity and strand selection.
    Sano M; Sierant M; Miyagishi M; Nakanishi M; Takagi Y; Sutou S
    Nucleic Acids Res; 2008 Oct; 36(18):5812-21. PubMed ID: 18782830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adenosine Deaminase Acting on RNA 1 Associates with Orf Virus OV20.0 and Enhances Viral Replication.
    Liao GR; Tseng YY; Tseng CY; Lin FY; Yamada Y; Liu HP; Kuan CY; Hsu WL
    J Virol; 2019 Apr; 93(7):. PubMed ID: 30651363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small interfering RNAs induce macrophage migration inhibitory factor production and proliferation in breast cancer cells via a double-stranded RNA-dependent protein kinase-dependent mechanism.
    Armstrong ME; Gantier M; Li L; Chung WY; McCann A; Baugh JA; Donnelly SC
    J Immunol; 2008 Jun; 180(11):7125-33. PubMed ID: 18490711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. D-Isonucleotide (isoNA) incorporation around cleavage site of passenger strand promotes the vibration of Ago2-PAZ domain and enhances in vitro potency of siRNA.
    Huang Y; Tian M; Zhang Y; Sheng G; Chen Z; Ma Y; Chen Y; Peng Y; Zhao YL; Wang Y; Zhang L; Yang Z
    Org Biomol Chem; 2015 Nov; 13(44):10825-33. PubMed ID: 26313718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recognition of siRNA asymmetry by TAR RNA binding protein.
    Gredell JA; Dittmer MJ; Wu M; Chan C; Walton SP
    Biochemistry; 2010 Apr; 49(14):3148-55. PubMed ID: 20184375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N(2)-Modified 2-aminopurine ribonucleosides as minor-groove-modulating adenosine replacements in duplex RNA.
    Peacock H; Maydanovych O; Beal PA
    Org Lett; 2010 Mar; 12(5):1044-7. PubMed ID: 20108910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. siRNA function in RNAi: a chemical modification analysis.
    Chiu YL; Rana TM
    RNA; 2003 Sep; 9(9):1034-48. PubMed ID: 12923253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potent RNAi by short RNA triggers.
    Chu CY; Rana TM
    RNA; 2008 Sep; 14(9):1714-9. PubMed ID: 18658119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA-specific adenosine deaminase ADAR1 suppresses measles virus-induced apoptosis and activation of protein kinase PKR.
    Toth AM; Li Z; Cattaneo R; Samuel CE
    J Biol Chem; 2009 Oct; 284(43):29350-6. PubMed ID: 19710021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Partial reconstitution of the RNAi response in human cells using Drosophila gene products.
    Kennedy EM; Kornepati AV; Bogerd HP; Cullen BR
    RNA; 2017 Feb; 23(2):153-160. PubMed ID: 27837013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects on RNA interference in gene expression (RNAi) in cultured mammalian cells of mismatches and the introduction of chemical modifications at the 3'-ends of siRNAs.
    Hamada M; Ohtsuka T; Kawaida R; Koizumi M; Morita K; Furukawa H; Imanishi T; Miyagishi M; Taira K
    Antisense Nucleic Acid Drug Dev; 2002 Oct; 12(5):301-9. PubMed ID: 12477280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Double-stranded RNA deaminase ADAR1 promotes the Zika virus replication by inhibiting the activation of protein kinase PKR.
    Zhou S; Yang C; Zhao F; Huang Y; Lin Y; Huang C; Ma X; Du J; Wang Y; Long G; He J; Liu C; Zhang P
    J Biol Chem; 2019 Nov; 294(48):18168-18180. PubMed ID: 31636123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adenosine deaminase ADAR1 increases gene expression at the translational level by decreasing protein kinase PKR-dependent eIF-2alpha phosphorylation.
    Wang Y; Samuel CE
    J Mol Biol; 2009 Nov; 393(4):777-87. PubMed ID: 19733181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measles Virus Defective Interfering RNAs Are Generated Frequently and Early in the Absence of C Protein and Can Be Destabilized by Adenosine Deaminase Acting on RNA-1-Like Hypermutations.
    Pfaller CK; Mastorakos GM; Matchett WE; Ma X; Samuel CE; Cattaneo R
    J Virol; 2015 Aug; 89(15):7735-47. PubMed ID: 25972541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.