These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 20863297)

  • 21. Temporal sampling, resetting, and adaptation orchestrate gradient sensing in sperm.
    Kashikar ND; Alvarez L; Seifert R; Gregor I; Jäckle O; Beyermann M; Krause E; Kaupp UB
    J Cell Biol; 2012 Sep; 198(6):1075-91. PubMed ID: 22986497
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A K+-selective cGMP-gated ion channel controls chemosensation of sperm.
    Strünker T; Weyand I; Bönigk W; Van Q; Loogen A; Brown JE; Kashikar N; Hagen V; Krause E; Kaupp UB
    Nat Cell Biol; 2006 Oct; 8(10):1149-54. PubMed ID: 16964244
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A functional genomic and proteomic perspective of sea urchin calcium signaling and egg activation.
    Roux MM; Townley IK; Raisch M; Reade A; Bradham C; Humphreys G; Gunaratne HJ; Killian CE; Moy G; Su YH; Ettensohn CA; Wilt F; Vacquier VD; Burke RD; Wessel G; Foltz KR
    Dev Biol; 2006 Dec; 300(1):416-33. PubMed ID: 17054939
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sperm Sensory Signaling.
    Wachten D; Jikeli JF; Kaupp UB
    Cold Spring Harb Perspect Biol; 2017 Jul; 9(7):. PubMed ID: 28062561
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hyperactivation of mammalian sperm.
    Suarez SS; Ho HC
    Cell Mol Biol (Noisy-le-grand); 2003 May; 49(3):351-6. PubMed ID: 12887087
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The computational sperm cell.
    Alvarez L; Friedrich BM; Gompper G; Kaupp UB
    Trends Cell Biol; 2014 Mar; 24(3):198-207. PubMed ID: 24342435
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of sperm chemokinesis with exposure to jelly coats of sea urchin eggs and resact: a microfluidic experiment and numerical study.
    Inamdar MV; Kim T; Chung YK; Was AM; Xiang X; Wang CW; Takayama S; Lastoskie CM; Thomas FI; Sastry AM
    J Exp Biol; 2007 Nov; 210(Pt 21):3805-20. PubMed ID: 17951422
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sperm chemotaxis in marine invertebrates--molecules and mechanisms.
    Kaupp UB; Hildebrand E; Weyand I
    J Cell Physiol; 2006 Sep; 208(3):487-94. PubMed ID: 16619222
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modular analysis of the control of flagellar Ca2+-spike trains produced by CatSper and CaV channels in sea urchin sperm.
    Priego-Espinosa DA; Darszon A; Guerrero A; González-Cota AL; Nishigaki T; Martínez-Mekler G; Carneiro J
    PLoS Comput Biol; 2020 Mar; 16(3):e1007605. PubMed ID: 32119665
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sperm-activating peptides in the regulation of ion fluxes, signal transduction and motility.
    Darszon A; Guerrero A; Galindo BE; Nishigaki T; Wood CD
    Int J Dev Biol; 2008; 52(5-6):595-606. PubMed ID: 18649273
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The CatSper channel controls chemosensation in sea urchin sperm.
    Seifert R; Flick M; Bönigk W; Alvarez L; Trötschel C; Poetsch A; Müller A; Goodwin N; Pelzer P; Kashikar ND; Kremmer E; Jikeli J; Timmermann B; Kuhl H; Fridman D; Windler F; Kaupp UB; Strünker T
    EMBO J; 2015 Feb; 34(3):379-92. PubMed ID: 25535245
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Network model predicts that CatSper is the main Ca
    Espinal-Enríquez J; Priego-Espinosa DA; Darszon A; Beltrán C; Martínez-Mekler G
    Sci Rep; 2017 Jun; 7(1):4236. PubMed ID: 28652586
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sperm channel diversity and functional multiplicity.
    Darszon A; Acevedo JJ; Galindo BE; Hernández-González EO; Nishigaki T; Treviño CL; Wood C; Beltrán C
    Reproduction; 2006 Jun; 131(6):977-88. PubMed ID: 16735537
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mammalian sperm chemotaxis and its association with capacitation.
    Eisenbach M
    Dev Genet; 1999; 25(2):87-94. PubMed ID: 10440842
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional characterization of a mouse testicular olfactory receptor and its role in chemosensing and in regulation of sperm motility.
    Fukuda N; Yomogida K; Okabe M; Touhara K
    J Cell Sci; 2004 Nov; 117(Pt 24):5835-45. PubMed ID: 15522887
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Different migration patterns of sea urchin and mouse sperm revealed by a microfluidic chemotaxis device.
    Chang H; Kim BJ; Kim YS; Suarez SS; Wu M
    PLoS One; 2013; 8(4):e60587. PubMed ID: 23613731
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Revisiting the role of H+ in chemotactic signaling of sperm.
    Solzin J; Helbig A; Van Q; Brown JE; Hildebrand E; Weyand I; Kaupp UB
    J Gen Physiol; 2004 Aug; 124(2):115-24. PubMed ID: 15277573
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ca2+ bursts occur around a local minimal concentration of attractant and trigger sperm chemotactic response.
    Shiba K; Baba SA; Inoue T; Yoshida M
    Proc Natl Acad Sci U S A; 2008 Dec; 105(49):19312-7. PubMed ID: 19047630
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression of multiple Src family kinases in sea urchin eggs and their function in Ca2+ release at fertilization.
    Townley IK; Schuyler E; Parker-Gür M; Foltz KR
    Dev Biol; 2009 Mar; 327(2):465-77. PubMed ID: 19150445
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lipid rafts function in Ca2+ signaling responsible for activation of sperm motility and chemotaxis in the ascidian Ciona intestinalis.
    Zhu L; Inaba K
    Mol Reprod Dev; 2011 Dec; 78(12):920-9. PubMed ID: 21887722
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.