BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 208637)

  • 21. Orientation of ferrochelatase in bovine liver mitochondria.
    Harbin BM; Dailey HA
    Biochemistry; 1985 Jan; 24(2):366-70. PubMed ID: 3884041
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A chelator is required for microsomal lipid peroxidation following reductive ferritin-iron mobilisation.
    Goddard JG; Gower JD; Green CJ
    Free Radic Res Commun; 1992; 17(3):177-85. PubMed ID: 1459490
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flavin-mediated reductive iron mobilization from frog M and Mycobacterial ferritins: impact of their size, charge and reactivities with NADH/O
    Koochana PK; Mohanty A; Parida A; Behera N; Behera PM; Dixit A; Behera RK
    J Biol Inorg Chem; 2021 May; 26(2-3):265-281. PubMed ID: 33598740
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mitochondrial iron not bound in heme and iron-sulfur centers. Estimation, compartmentation and redox state.
    Tangerås A; Flatmark T; Bäckström D; Ehrenberg A
    Biochim Biophys Acta; 1980 Feb; 589(2):162-75. PubMed ID: 6243966
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Liver ferrochelatase from normal and hexachlorobenzene porphyric rats. Studies on their properties.
    Rios de Molina MC; Taira MC; San Martin de Viale LC
    Int J Biochem; 1989; 21(2):219-25. PubMed ID: 2744203
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Studies of iron overload. Lysosomal proteolysis of rat liver ferritin.
    Richter GW
    Pathol Res Pract; 1986 May; 181(2):159-67. PubMed ID: 3737472
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flavin adenine dinucleotide synthesis in isolated rat liver mitochondria caused by imported flavin mononucleotide.
    Barile M; Passarella S; Bertoldi A; Quagliariello E
    Arch Biochem Biophys; 1993 Sep; 305(2):442-7. PubMed ID: 8373181
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Studies on the ferrochelatase activity of mitochondria and submitochondrial particles with special refefence to the regulatory function of the mitochondrial inner membrane.
    Koller ME; Romslo I
    Biochim Biophys Acta; 1977 Aug; 461(2):283-96. PubMed ID: 19059
    [No Abstract]   [Full Text] [Related]  

  • 29. Effect of chaotropes on the kinetics of iron release from ferritin by flavin nucleotides.
    Johnson LE; Wilkinson T; Arosio P; Melman A; Bou-Abdallah F
    Biochim Biophys Acta Gen Subj; 2017 Dec; 1861(12):3257-3262. PubMed ID: 28943300
    [TBL] [Abstract][Full Text] [Related]  

  • 30. FAM210B is an erythropoietin target and regulates erythroid heme synthesis by controlling mitochondrial iron import and ferrochelatase activity.
    Yien YY; Shi J; Chen C; Cheung JTM; Grillo AS; Shrestha R; Li L; Zhang X; Kafina MD; Kingsley PD; King MJ; Ablain J; Li H; Zon LI; Palis J; Burke MD; Bauer DE; Orkin SH; Koehler CM; Phillips JD; Kaplan J; Ward DM; Lodish HF; Paw BH
    J Biol Chem; 2018 Dec; 293(51):19797-19811. PubMed ID: 30366982
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Disruption of flavin homeostasis in isolated rat liver mitochondria.
    Frolova MS; Marchenkov VV; Vekshin NL
    Biochem Biophys Res Commun; 2019 Sep; 516(4):1211-1215. PubMed ID: 31300198
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Iron release from ferritin by flavin nucleotides.
    Melman G; Bou-Abdallah F; Vane E; Maura P; Arosio P; Melman A
    Biochim Biophys Acta; 2013 Oct; 1830(10):4669-74. PubMed ID: 23726988
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Porcine ferrochelatase: the relationship between iron-removal reaction and the conversion of heme to Zn-protoporphyrin.
    Chau TT; Ishigaki M; Kataoka T; Taketani S
    Biosci Biotechnol Biochem; 2010; 74(7):1415-20. PubMed ID: 20622448
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Some properties of the purified ferritin reductase from the rat liver microsomes [proceedings].
    Zaman Z; Verwilghen RL
    Biochem Soc Trans; 1979 Feb; 7(1):201-2. PubMed ID: 437276
    [No Abstract]   [Full Text] [Related]  

  • 35. Kinetic studies of ferrochelatase in yeast. Zinc or iron as competing substrates.
    Camadro JM; Labbe P
    Biochim Biophys Acta; 1982 Oct; 707(2):280-8. PubMed ID: 6753940
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 5‑Aminolevurinic acid inhibits the proliferation of bladder cancer cells by activating heme synthesis.
    Nakai Y; Tatsumi Y; Hori S; Morizawa Y; Iida K; Onishi K; Miyake M; Oda Y; Owari T; Fujii T; Onishi S; Tanaka N; Fujimoto K
    Oncol Rep; 2022 Oct; 48(4):. PubMed ID: 36082808
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enzymatic formation of zinc-protoporphyrin by rat liver and its potential effect on hepatic heme metabolism.
    Bloomer JR; Reuter RJ; Morton KO; Wehner JM
    Gastroenterology; 1983 Sep; 85(3):663-8. PubMed ID: 6873612
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetic studies of human liver ferrochelatase. Role of endogenous metals.
    Camadro JM; Ibraham NG; Levere RD
    J Biol Chem; 1984 May; 259(9):5678-82. PubMed ID: 6425295
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Iron uptake and heme synthesis by isolated rat liver mitochondria. Diferric transferrin as iron donor and the effect of pyrophosphate.
    Nilsen T; Romslo I
    Biochim Biophys Acta; 1985 Oct; 842(2-3):162-9. PubMed ID: 2996611
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Erythroid cell mitochondria receive endosomal iron by a "kiss-and-run" mechanism.
    Hamdi A; Roshan TM; Kahawita TM; Mason AB; Sheftel AD; Ponka P
    Biochim Biophys Acta; 2016 Dec; 1863(12):2859-2867. PubMed ID: 27627839
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.