These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 20863708)

  • 1. A histone deacetylase-dependent screen in yeast.
    Weerasinghe SV; Wambua M; Pflum MK
    Bioorg Med Chem; 2010 Nov; 18(21):7586-92. PubMed ID: 20863708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The structural requirements of histone deacetylase inhibitors: C4-modified SAHA analogs display dual HDAC6/HDAC8 selectivity.
    Negmeldin AT; Knoff JR; Pflum MKH
    Eur J Med Chem; 2018 Jan; 143():1790-1806. PubMed ID: 29150330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Requirements of Histone Deacetylase Inhibitors: SAHA Analogs Modified on the Hydroxamic Acid.
    Bieliauskas AV; Weerasinghe SV; Negmeldin AT; Pflum MK
    Arch Pharm (Weinheim); 2016 May; 349(5):373-82. PubMed ID: 27062198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structural requirements of histone deacetylase inhibitors: suberoylanilide hydroxamic acid analogs modified at the C6 position.
    Choi SE; Pflum MK
    Bioorg Med Chem Lett; 2012 Dec; 22(23):7084-6. PubMed ID: 23089527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structural requirements of histone deacetylase inhibitors: SAHA analogs modified at the C5 position display dual HDAC6/8 selectivity.
    Negmeldin AT; Pflum MKH
    Bioorg Med Chem Lett; 2017 Aug; 27(15):3254-3258. PubMed ID: 28648461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recruitment of Rpd3 to the telomere depends on the protein arginine methyltransferase Hmt1.
    Milliman EJ; Yadav N; Chen YC; Muddukrishna B; Karunanithi S; Yu MC
    PLoS One; 2012; 7(8):e44656. PubMed ID: 22953000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structural requirements of histone deacetylase inhibitors: Suberoylanilide hydroxamic acid analogs modified at the C3 position display isoform selectivity.
    Choi SE; Weerasinghe SV; Pflum MK
    Bioorg Med Chem Lett; 2011 Oct; 21(20):6139-42. PubMed ID: 21889343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and synthesis of novel histone deacetylase inhibitor derived from nuclear localization signal peptide.
    Canzoneri JC; Chen PC; Oyelere AK
    Bioorg Med Chem Lett; 2009 Dec; 19(23):6588-90. PubMed ID: 19854643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histone Deacetylase Inhibitor Suberoylanilide Hydroxamic Acid Suppresses Human Adenovirus Gene Expression and Replication.
    Saha B; Parks RJ
    J Virol; 2019 Jun; 93(12):. PubMed ID: 30944181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High throughput screening identifies modulators of histone deacetylase inhibitors.
    Gaupel AC; Begley T; Tenniswood M
    BMC Genomics; 2014 Jun; 15(1):528. PubMed ID: 24968945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coumarin-suberoylanilide hydroxamic acid as a fluorescent probe for determining binding affinities and off-rates of histone deacetylase inhibitors.
    Singh RK; Mandal T; Balasubramanian N; Cook G; Srivastava DK
    Anal Biochem; 2011 Jan; 408(2):309-15. PubMed ID: 20816742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico modification of suberoylanilide hydroxamic acid (SAHA) as potential inhibitor for class II histone deacetylase (HDAC).
    Tambunan US; Bramantya N; Parikesit AA
    BMC Bioinformatics; 2011; 12 Suppl 13(Suppl 13):S23. PubMed ID: 22373132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorus containing analogues of SAHA as inhibitors of HDACs.
    Pun MD; Wu HH; Olatunji FP; Kesic BN; Peters JW; Berkman CE
    J Enzyme Inhib Med Chem; 2022 Dec; 37(1):1315-1319. PubMed ID: 35514164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SAHA Capture Compound--a novel tool for the profiling of histone deacetylases and the identification of additional vorinostat binders.
    Fischer JJ; Michaelis S; Schrey AK; Diehl A; Graebner OY; Ungewiss J; Horzowski S; Glinski M; Kroll F; Dreger M; Koester H
    Proteomics; 2011 Oct; 11(20):4096-104. PubMed ID: 21898820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The histone deacetylases Rpd3 and Hst1 antagonistically regulate de novo NAD
    Groth B; Huang CC; Lin SJ
    J Biol Chem; 2022 Oct; 298(10):102410. PubMed ID: 36007612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and synthesis of novel and highly-active pan-histone deacetylase (pan-HDAC) inhibitors.
    Tashima T; Murata H; Kodama H
    Bioorg Med Chem; 2014 Jul; 22(14):3720-31. PubMed ID: 24864038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of type I histone deacetylase increases resistance of checkpoint-deficient cells to genotoxic agents through mitotic delay.
    Alao JP; Olesch J; Sunnerhagen P
    Mol Cancer Ther; 2009 Sep; 8(9):2606-15. PubMed ID: 19723888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbamates as Potential Prodrugs and a New Warhead for HDAC Inhibition.
    King K; Hauser AT; Melesina J; Sippl W; Jung M
    Molecules; 2018 Feb; 23(2):. PubMed ID: 29393896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histone Deacetylases with Antagonistic Roles in Saccharomyces cerevisiae Heterochromatin Formation.
    Thurtle-Schmidt DM; Dodson AE; Rine J
    Genetics; 2016 Sep; 204(1):177-90. PubMed ID: 27489001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibitors of histone deacetylase as antitumor agents: A critical review.
    Manal M; Chandrasekar MJ; Gomathi Priya J; Nanjan MJ
    Bioorg Chem; 2016 Aug; 67():18-42. PubMed ID: 27239721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.