These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 20864)
41. Lifetime of the excited state in vivo. I. Chlorophyll a in algae, at room and at liquid nitrogen temperatures; rate constants of radiationless deactivation and trapping. Mar T; Govindjee ; Singhal GS; Merkelo H Biophys J; 1972 Jul; 12(7):797-808. PubMed ID: 4624832 [TBL] [Abstract][Full Text] [Related]
42. Utilization of LPG and gasoline engine exhaust emissions by microalgae. Taştan BE; Duygu E; Ilbaş M; Dönmez G J Hazard Mater; 2013 Feb; 246-247():173-80. PubMed ID: 23298742 [TBL] [Abstract][Full Text] [Related]
43. Arsenic uptake, transformation, and release by three freshwater algae under conditions with and without growth stress. Xie S; Liu J; Yang F; Feng H; Wei C; Wu F Environ Sci Pollut Res Int; 2018 Jul; 25(20):19413-19422. PubMed ID: 29728971 [TBL] [Abstract][Full Text] [Related]
44. Toxicological effects of chlorpyrifos on growth, enzyme activity and chlorophyll a synthesis of freshwater microalgae. Chen S; Chen M; Wang Z; Qiu W; Wang J; Shen Y; Wang Y; Ge S Environ Toxicol Pharmacol; 2016 Jul; 45():179-86. PubMed ID: 27314761 [TBL] [Abstract][Full Text] [Related]
45. Time-resolved endogenous chlorophyll fluorescence sensitivity to pH: study on Chlorella sp. algae. Marcek Chorvatova A; Uherek M; Mateasik A; Chorvat D Methods Appl Fluoresc; 2020 Mar; 8(2):024007. PubMed ID: 32074513 [TBL] [Abstract][Full Text] [Related]
46. Vanadium stimulates pepper plant growth and flowering, increases concentrations of amino acids, sugars and chlorophylls, and modifies nutrient concentrations. García-Jiménez A; Trejo-Téllez LI; Guillén-Sánchez D; Gómez-Merino FC PLoS One; 2018; 13(8):e0201908. PubMed ID: 30092079 [TBL] [Abstract][Full Text] [Related]
47. Landfill leachate--a water and nutrient resource for algae-based biofuels. Edmundson SJ; Wilkie AC Environ Technol; 2013; 34(13-16):1849-57. PubMed ID: 24350438 [TBL] [Abstract][Full Text] [Related]
48. Effects of paraquat on photosynthetic pigments, antioxidant enzymes, and gene expression in Chlorella pyrenoidosa under mixotrophic compared with autotrophic conditions. Zhang W; Liu M; Zhang P; Yu F; Lu S; Li P; Zhou J Arch Environ Contam Toxicol; 2014 Nov; 67(4):593-600. PubMed ID: 25038722 [TBL] [Abstract][Full Text] [Related]
49. Biotoxicity of water-soluble species in PM Yang L; Duan F; Tian H; He K; Ma Y; Ma T; Li H; Yang S; Zhu L Environ Pollut; 2019 Jul; 250():914-921. PubMed ID: 31085478 [TBL] [Abstract][Full Text] [Related]
50. Removal of dichlorophenol by Chlorella pyrenoidosa through self-regulating mechanism in air-tight test environment. Li F; Zhao L; Jinxu Y; Shi W; Zhou S; Yuan K; Sheng GD Ecotoxicol Environ Saf; 2018 Nov; 164():109-117. PubMed ID: 30099171 [TBL] [Abstract][Full Text] [Related]
51. Heterotrophic culture of Chlorella protothecoides in various nitrogen sources for lipid production. Shen Y; Yuan W; Pei Z; Mao E Appl Biochem Biotechnol; 2010 Mar; 160(6):1674-84. PubMed ID: 19424668 [TBL] [Abstract][Full Text] [Related]
52. Size-dependent toxicity of ThO He X; Xie C; Ma Y; Wang L; He X; Shi W; Liu X; Liu Y; Zhang Z Aquat Toxicol; 2019 Apr; 209():113-120. PubMed ID: 30769157 [TBL] [Abstract][Full Text] [Related]
53. Boron bioremoval by a newly isolated Chlorella sp. and its stimulation by growth stimulators. Taştan BE; Duygu E; Dönmez G Water Res; 2012 Jan; 46(1):167-75. PubMed ID: 22078227 [TBL] [Abstract][Full Text] [Related]
54. Permissible value for vanadium in allitic udic ferrisols based on physiological responses of green Chinese cabbage and soil microbes. Xiao XY; Yang M; Guo ZH; Luo YP; Bi JP Biol Trace Elem Res; 2012 Feb; 145(2):225-32. PubMed ID: 21898106 [TBL] [Abstract][Full Text] [Related]
55. Endogenous 4-hydroxy-2-nonenal in microalga Chlorella kessleri acts as a bioactive indicator of pollution with common herbicides and growth regulating factor of hormesis. Spoljaric D; Cipak A; Horvatic J; Andrisic L; Waeg G; Zarkovic N; Jaganjac M Aquat Toxicol; 2011 Oct; 105(3-4):552-8. PubMed ID: 21937009 [TBL] [Abstract][Full Text] [Related]
56. NH4C1 activation of the fluorescence yield in CO2-starved Chlorella pyrenoidosa. Slovacek RE; Bannister TT Biochim Biophys Acta; 1973 Oct; 325(1):114-9. PubMed ID: 4770722 [No Abstract] [Full Text] [Related]
57. Assessing the combined effects from two kinds of cephalosporins on green alga (Chlorella pyrenoidosa) based on response surface methodology. Guo R; Xie W; Chen J Food Chem Toxicol; 2015 Apr; 78():116-21. PubMed ID: 25684417 [TBL] [Abstract][Full Text] [Related]
58. [Trace element proportion in the nutrient medium as a factor in increasing the resistance of Chlorella to unfavorable cultivation conditions]. Upitis VV; Pakalne DS; Nollendorf AF Mikrobiologiia; 1973; 42(5):854-8. PubMed ID: 4792251 [No Abstract] [Full Text] [Related]
59. Effect of Cu and Ni on growth, mineral uptake, photosynthesis and enzyme activities of Chlorella vulgaris at different pH values. Rai PK; Mallick N; Rai LC Biomed Environ Sci; 1994 Mar; 7(1):56-67. PubMed ID: 8024720 [TBL] [Abstract][Full Text] [Related]
60. Experiments on the accumulation of lindane (gamma-BHC) by the primary producers Chlorella spec. and Chlorella pyrenoidosa. Hansen PD Arch Environ Contam Toxicol; 1979; 8(6):721-31. PubMed ID: 93882 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]