These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 20864542)
1. Macroautophagy is not directly involved in the metabolism of amyloid precursor protein. Boland B; Smith DA; Mooney D; Jung SS; Walsh DM; Platt FM J Biol Chem; 2010 Nov; 285(48):37415-26. PubMed ID: 20864542 [TBL] [Abstract][Full Text] [Related]
2. APP overexpression in the absence of NPC1 exacerbates metabolism of amyloidogenic proteins of Alzheimer's disease. Maulik M; Peake K; Chung J; Wang Y; Vance JE; Kar S Hum Mol Genet; 2015 Dec; 24(24):7132-50. PubMed ID: 26433932 [TBL] [Abstract][Full Text] [Related]
3. Accumulation of amyloid precursor protein C-terminal fragments triggers mitochondrial structure, function, and mitophagy defects in Alzheimer's disease models and human brains. Vaillant-Beuchot L; Mary A; Pardossi-Piquard R; Bourgeois A; Lauritzen I; Eysert F; Kinoshita PF; Cazareth J; Badot C; Fragaki K; Bussiere R; Martin C; Mary R; Bauer C; Pagnotta S; Paquis-Flucklinger V; Buée-Scherrer V; Buée L; Lacas-Gervais S; Checler F; Chami M Acta Neuropathol; 2021 Jan; 141(1):39-65. PubMed ID: 33079262 [TBL] [Abstract][Full Text] [Related]
4. Reduction of brain beta-amyloid (Abeta) by fluvastatin, a hydroxymethylglutaryl-CoA reductase inhibitor, through increase in degradation of amyloid precursor protein C-terminal fragments (APP-CTFs) and Abeta clearance. Shinohara M; Sato N; Kurinami H; Takeuchi D; Takeda S; Shimamura M; Yamashita T; Uchiyama Y; Rakugi H; Morishita R J Biol Chem; 2010 Jul; 285(29):22091-102. PubMed ID: 20472556 [TBL] [Abstract][Full Text] [Related]
5. Transgenic expression of a ratiometric autophagy probe specifically in neurons enables the interrogation of brain autophagy in vivo. Lee JH; Rao MV; Yang DS; Stavrides P; Im E; Pensalfini A; Huo C; Sarkar P; Yoshimori T; Nixon RA Autophagy; 2019 Mar; 15(3):543-557. PubMed ID: 30269645 [TBL] [Abstract][Full Text] [Related]
6. Autophagy-mediated Regulation of BACE1 Protein Trafficking and Degradation. Feng T; Tammineni P; Agrawal C; Jeong YY; Cai Q J Biol Chem; 2017 Feb; 292(5):1679-1690. PubMed ID: 28028177 [TBL] [Abstract][Full Text] [Related]
7. Sphingolipid storage affects autophagic metabolism of the amyloid precursor protein and promotes Abeta generation. Tamboli IY; Hampel H; Tien NT; Tolksdorf K; Breiden B; Mathews PM; Saftig P; Sandhoff K; Walter J J Neurosci; 2011 Feb; 31(5):1837-49. PubMed ID: 21289194 [TBL] [Abstract][Full Text] [Related]
8. NRBF2 is a RAB7 effector required for autophagosome maturation and mediates the association of APP-CTFs with active form of RAB7 for degradation. Cai CZ; Yang C; Zhuang XX; Yuan NN; Wu MY; Tan JQ; Song JX; Cheung KH; Su H; Wang YT; Tang BS; Behrends C; Durairajan SSK; Yue Z; Li M; Lu JH Autophagy; 2021 May; 17(5):1112-1130. PubMed ID: 32543313 [TBL] [Abstract][Full Text] [Related]
9. Intracellular accumulation of amyloidogenic fragments of amyloid-beta precursor protein in neurons with Niemann-Pick type C defects is associated with endosomal abnormalities. Jin LW; Shie FS; Maezawa I; Vincent I; Bird T Am J Pathol; 2004 Mar; 164(3):975-85. PubMed ID: 14982851 [TBL] [Abstract][Full Text] [Related]
10. Altered levels and distribution of amyloid precursor protein and its processing enzymes in Niemann-Pick type C1-deficient mouse brains. Kodam A; Maulik M; Peake K; Amritraj A; Vetrivel KS; Thinakaran G; Vance JE; Kar S Glia; 2010 Aug; 58(11):1267-81. PubMed ID: 20607864 [TBL] [Abstract][Full Text] [Related]
11. A novel fluorescent probe reveals starvation controls the commitment of amyloid precursor protein to the lysosome. Hein LK; Apaja PM; Hattersley K; Grose RH; Xie J; Proud CG; Sargeant TJ Biochim Biophys Acta Mol Cell Res; 2017 Oct; 1864(10):1554-1565. PubMed ID: 28641977 [TBL] [Abstract][Full Text] [Related]
12. Intraneuronal aggregation of the β-CTF fragment of APP (C99) induces Aβ-independent lysosomal-autophagic pathology. Lauritzen I; Pardossi-Piquard R; Bourgeois A; Pagnotta S; Biferi MG; Barkats M; Lacor P; Klein W; Bauer C; Checler F Acta Neuropathol; 2016 Aug; 132(2):257-276. PubMed ID: 27138984 [TBL] [Abstract][Full Text] [Related]
13. Neurons die with heightened but functional macro- and chaperone mediated autophagy upon increased amyloid-ß induced toxicity with region-specific protection in prolonged intermittent fasting. Ntsapi CM; Loos B Exp Cell Res; 2021 Nov; 408(2):112840. PubMed ID: 34624324 [TBL] [Abstract][Full Text] [Related]
14. Lysosomal dysfunction in a mouse model of Sandhoff disease leads to accumulation of ganglioside-bound amyloid-β peptide. Keilani S; Lun Y; Stevens AC; Williams HN; Sjoberg ER; Khanna R; Valenzano KJ; Checler F; Buxbaum JD; Yanagisawa K; Lockhart DJ; Wustman BA; Gandy S J Neurosci; 2012 Apr; 32(15):5223-36. PubMed ID: 22496568 [TBL] [Abstract][Full Text] [Related]
15. TFEB-mediated Enhancement of the Autophagy-lysosomal Pathway Dually Modulates the Process of Amyloid β-Protein Generation in Neurons. Yamamoto F; Taniguchi K; Mamada N; Tamaoka A; Kametani F; Lakshmana MK; Araki W Neuroscience; 2019 Mar; 402():11-22. PubMed ID: 30677488 [TBL] [Abstract][Full Text] [Related]
16. Tetraspanin 6: a pivotal protein of the multiple vesicular body determining exosome release and lysosomal degradation of amyloid precursor protein fragments. Guix FX; Sannerud R; Berditchevski F; Arranz AM; Horré K; Snellinx A; Thathiah A; Saido T; Saito T; Rajesh S; Overduin M; Kumar-Singh S; Radaelli E; Corthout N; Colombelli J; Tosi S; Munck S; Salas IH; Annaert W; De Strooper B Mol Neurodegener; 2017 Mar; 12(1):25. PubMed ID: 28279219 [TBL] [Abstract][Full Text] [Related]
17. Lysosomal dysfunction in the brain of a mouse model with intraneuronal accumulation of carboxyl terminal fragments of the amyloid precursor protein. Kaur G; Pawlik M; Gandy SE; Ehrlich ME; Smiley JF; Levy E Mol Psychiatry; 2017 Jul; 22(7):981-989. PubMed ID: 27777419 [TBL] [Abstract][Full Text] [Related]
18. Dynamic changes of autophagic flux induced by Abeta in the brain of postmortem Alzheimer's disease patients, animal models and cell models. Long Z; Chen J; Zhao Y; Zhou W; Yao Q; Wang Y; He G Aging (Albany NY); 2020 Jun; 12(11):10912-10930. PubMed ID: 32535554 [TBL] [Abstract][Full Text] [Related]
19. ErbB2 regulates autophagic flux to modulate the proteostasis of APP-CTFs in Alzheimer's disease. Wang BJ; Her GM; Hu MK; Chen YW; Tung YT; Wu PY; Hsu WM; Lee H; Jin LW; Hwang SL; Chen RP; Huang CJ; Liao YF Proc Natl Acad Sci U S A; 2017 Apr; 114(15):E3129-E3138. PubMed ID: 28351972 [TBL] [Abstract][Full Text] [Related]
20. Possible Clues for Brain Energy Translation via Endolysosomal Trafficking of APP-CTFs in Alzheimer's Disease. Sivanesan S; Mundugaru R; Rajadas J Oxid Med Cell Longev; 2018; 2018():2764831. PubMed ID: 30420907 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]