BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 20864602)

  • 1. Fronto-striatal contribution to lexical set-shifting.
    Simard F; Joanette Y; Petrides M; Jubault T; Madjar C; Monchi O
    Cereb Cortex; 2011 May; 21(5):1084-93. PubMed ID: 20864602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in regional and temporal patterns of activity associated with aging during the performance of a lexical set-shifting task.
    Martins R; Simard F; Provost JS; Monchi O
    Cereb Cortex; 2012 Jun; 22(6):1395-406. PubMed ID: 21868390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new lexical card-sorting task for studying fronto-striatal contribution to processing language rules.
    Simard F; Monetta L; Nagano-Saito A; Monchi O
    Brain Lang; 2013 Jun; 125(3):295-306. PubMed ID: 21925720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural networks of response shifting: influence of task speed and stimulus material.
    Loose R; Kaufmann C; Tucha O; Auer DP; Lange KW
    Brain Res; 2006 May; 1090(1):146-55. PubMed ID: 16643867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fronto-striatal hypoactivation during correct information retrieval in patients with schizophrenia: an fMRI study.
    Koch K; Wagner G; Nenadic I; Schachtzabel C; Schultz C; Roebel M; Reichenbach JR; Sauer H; Schlösser RG
    Neuroscience; 2008 Apr; 153(1):54-62. PubMed ID: 18359576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wisconsin Card Sorting revisited: distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging.
    Monchi O; Petrides M; Petre V; Worsley K; Dagher A
    J Neurosci; 2001 Oct; 21(19):7733-41. PubMed ID: 11567063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional MRI of macaque monkeys performing a cognitive set-shifting task.
    Nakahara K; Hayashi T; Konishi S; Miyashita Y
    Science; 2002 Feb; 295(5559):1532-6. PubMed ID: 11859197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prefrontal interactions reflect future task operations.
    Sakai K; Passingham RE
    Nat Neurosci; 2003 Jan; 6(1):75-81. PubMed ID: 12469132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of the striatum in processing language rules: evidence from word perception in Huntington's disease.
    Teichmann M; Dupoux E; Kouider S; Bachoud-Lévi AC
    J Cogn Neurosci; 2006 Sep; 18(9):1555-69. PubMed ID: 16989555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential superior prefrontal activity on initial versus subsequent shifts in naive subjects.
    Konishi S; Morimoto H; Jimura K; Asari T; Chikazoe J; Yamashita K; Hirose S; Miyashita Y
    Neuroimage; 2008 Jun; 41(2):575-80. PubMed ID: 18417365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of medial cortical, hippocampal and striatal interactions during cognitive set-shifting.
    Graham S; Phua E; Soon CS; Oh T; Au C; Shuter B; Wang SC; Yeh IB
    Neuroimage; 2009 May; 45(4):1359-67. PubMed ID: 19162202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cognitive persistence: Development and validation of a novel measure from the Wisconsin Card Sorting Test.
    Teubner-Rhodes S; Vaden KI; Dubno JR; Eckert MA
    Neuropsychologia; 2017 Jul; 102():95-108. PubMed ID: 28552783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thalamic-prefrontal cortical-ventral striatal circuitry mediates dissociable components of strategy set shifting.
    Block AE; Dhanji H; Thompson-Tardif SF; Floresco SB
    Cereb Cortex; 2007 Jul; 17(7):1625-36. PubMed ID: 16963518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the long-lasting residual effect of a set shift on frontostriatal activity.
    Provost JS; Petrides M; Simard F; Monchi O
    Cereb Cortex; 2012 Dec; 22(12):2811-9. PubMed ID: 22190431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive mechanism of cognitive control system.
    Morishima Y; Okuda J; Sakai K
    Cereb Cortex; 2010 Nov; 20(11):2675-83. PubMed ID: 20154012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple components of lateral posterior parietal activation associated with cognitive set shifting.
    Asari T; Konishi S; Jimura K; Miyashita Y
    Neuroimage; 2005 Jul; 26(3):694-702. PubMed ID: 15955479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Medial prefrontal activity during shifting under novel situations.
    Konishi S; Hirose S; Jimura K; Chikazoe J; Watanabe T; Kimura HM; Miyashita Y
    Neurosci Lett; 2010 Nov; 484(3):182-6. PubMed ID: 20732385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On verbal/nonverbal modality dependence of left and right inferior prefrontal activation during performance of flanker interference task.
    Morimoto HM; Hirose S; Chikazoe J; Jimura K; Asari T; Yamashita K; Miyashita Y; Konishi S
    J Cogn Neurosci; 2008 Nov; 20(11):2006-14. PubMed ID: 18416674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal brain dynamics during preparatory set shifting: MEG evidence.
    Periáñez JA; Maestú F; Barceló F; Fernández A; Amo C; Ortiz Alonso T
    Neuroimage; 2004 Feb; 21(2):687-95. PubMed ID: 14980570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theta burst stimulation-induced inhibition of dorsolateral prefrontal cortex reveals hemispheric asymmetry in striatal dopamine release during a set-shifting task: a TMS-[(11)C]raclopride PET study.
    Ko JH; Monchi O; Ptito A; Bloomfield P; Houle S; Strafella AP
    Eur J Neurosci; 2008 Nov; 28(10):2147-55. PubMed ID: 19046396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.