These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 20864602)

  • 1. Fronto-striatal contribution to lexical set-shifting.
    Simard F; Joanette Y; Petrides M; Jubault T; Madjar C; Monchi O
    Cereb Cortex; 2011 May; 21(5):1084-93. PubMed ID: 20864602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in regional and temporal patterns of activity associated with aging during the performance of a lexical set-shifting task.
    Martins R; Simard F; Provost JS; Monchi O
    Cereb Cortex; 2012 Jun; 22(6):1395-406. PubMed ID: 21868390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new lexical card-sorting task for studying fronto-striatal contribution to processing language rules.
    Simard F; Monetta L; Nagano-Saito A; Monchi O
    Brain Lang; 2013 Jun; 125(3):295-306. PubMed ID: 21925720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural networks of response shifting: influence of task speed and stimulus material.
    Loose R; Kaufmann C; Tucha O; Auer DP; Lange KW
    Brain Res; 2006 May; 1090(1):146-55. PubMed ID: 16643867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fronto-striatal hypoactivation during correct information retrieval in patients with schizophrenia: an fMRI study.
    Koch K; Wagner G; Nenadic I; Schachtzabel C; Schultz C; Roebel M; Reichenbach JR; Sauer H; Schlösser RG
    Neuroscience; 2008 Apr; 153(1):54-62. PubMed ID: 18359576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wisconsin Card Sorting revisited: distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging.
    Monchi O; Petrides M; Petre V; Worsley K; Dagher A
    J Neurosci; 2001 Oct; 21(19):7733-41. PubMed ID: 11567063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional MRI of macaque monkeys performing a cognitive set-shifting task.
    Nakahara K; Hayashi T; Konishi S; Miyashita Y
    Science; 2002 Feb; 295(5559):1532-6. PubMed ID: 11859197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prefrontal interactions reflect future task operations.
    Sakai K; Passingham RE
    Nat Neurosci; 2003 Jan; 6(1):75-81. PubMed ID: 12469132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of the striatum in processing language rules: evidence from word perception in Huntington's disease.
    Teichmann M; Dupoux E; Kouider S; Bachoud-Lévi AC
    J Cogn Neurosci; 2006 Sep; 18(9):1555-69. PubMed ID: 16989555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential superior prefrontal activity on initial versus subsequent shifts in naive subjects.
    Konishi S; Morimoto H; Jimura K; Asari T; Chikazoe J; Yamashita K; Hirose S; Miyashita Y
    Neuroimage; 2008 Jun; 41(2):575-80. PubMed ID: 18417365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of medial cortical, hippocampal and striatal interactions during cognitive set-shifting.
    Graham S; Phua E; Soon CS; Oh T; Au C; Shuter B; Wang SC; Yeh IB
    Neuroimage; 2009 May; 45(4):1359-67. PubMed ID: 19162202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cognitive persistence: Development and validation of a novel measure from the Wisconsin Card Sorting Test.
    Teubner-Rhodes S; Vaden KI; Dubno JR; Eckert MA
    Neuropsychologia; 2017 Jul; 102():95-108. PubMed ID: 28552783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thalamic-prefrontal cortical-ventral striatal circuitry mediates dissociable components of strategy set shifting.
    Block AE; Dhanji H; Thompson-Tardif SF; Floresco SB
    Cereb Cortex; 2007 Jul; 17(7):1625-36. PubMed ID: 16963518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the long-lasting residual effect of a set shift on frontostriatal activity.
    Provost JS; Petrides M; Simard F; Monchi O
    Cereb Cortex; 2012 Dec; 22(12):2811-9. PubMed ID: 22190431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive mechanism of cognitive control system.
    Morishima Y; Okuda J; Sakai K
    Cereb Cortex; 2010 Nov; 20(11):2675-83. PubMed ID: 20154012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple components of lateral posterior parietal activation associated with cognitive set shifting.
    Asari T; Konishi S; Jimura K; Miyashita Y
    Neuroimage; 2005 Jul; 26(3):694-702. PubMed ID: 15955479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Medial prefrontal activity during shifting under novel situations.
    Konishi S; Hirose S; Jimura K; Chikazoe J; Watanabe T; Kimura HM; Miyashita Y
    Neurosci Lett; 2010 Nov; 484(3):182-6. PubMed ID: 20732385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On verbal/nonverbal modality dependence of left and right inferior prefrontal activation during performance of flanker interference task.
    Morimoto HM; Hirose S; Chikazoe J; Jimura K; Asari T; Yamashita K; Miyashita Y; Konishi S
    J Cogn Neurosci; 2008 Nov; 20(11):2006-14. PubMed ID: 18416674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal brain dynamics during preparatory set shifting: MEG evidence.
    Periáñez JA; Maestú F; Barceló F; Fernández A; Amo C; Ortiz Alonso T
    Neuroimage; 2004 Feb; 21(2):687-95. PubMed ID: 14980570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theta burst stimulation-induced inhibition of dorsolateral prefrontal cortex reveals hemispheric asymmetry in striatal dopamine release during a set-shifting task: a TMS-[(11)C]raclopride PET study.
    Ko JH; Monchi O; Ptito A; Bloomfield P; Houle S; Strafella AP
    Eur J Neurosci; 2008 Nov; 28(10):2147-55. PubMed ID: 19046396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.