These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

497 related articles for article (PubMed ID: 20864781)

  • 1. Forming and switching mechanisms of a cation-migration-based oxide resistive memory.
    Tsuruoka T; Terabe K; Hasegawa T; Aono M
    Nanotechnology; 2010 Oct; 21(42):425205. PubMed ID: 20864781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature effects on the switching kinetics of a Cu-Ta2O5-based atomic switch.
    Tsuruoka T; Terabe K; Hasegawa T; Aono M
    Nanotechnology; 2011 Jun; 22(25):254013. PubMed ID: 21572189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonvolatile resistive switching in metal/La-doped BiFeO3/Pt sandwiches.
    Li M; Zhuge F; Zhu X; Yin K; Wang J; Liu Y; He C; Chen B; Li RW
    Nanotechnology; 2010 Oct; 21(42):425202. PubMed ID: 20858929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voltage-polarity dependent multi-mode resistive switching on sputtered MgO nanostructures.
    Dias C; Guerra LM; Bordalo BD; Lv H; Ferraria AM; Botelho do Rego AM; Cardoso S; Freitas PP; Ventura J
    Phys Chem Chem Phys; 2017 May; 19(17):10898-10904. PubMed ID: 28401238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resistive switching induced by metallic filaments formation through poly(3,4-ethylene-dioxythiophene):poly(styrenesulfonate).
    Wang Z; Zeng F; Yang J; Chen C; Pan F
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):447-53. PubMed ID: 22201222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of electrode materials on AlN-based bipolar and complementary resistive switching.
    Chen C; Gao S; Tang G; Fu H; Wang G; Song C; Zeng F; Pan F
    ACS Appl Mater Interfaces; 2013 Mar; 5(5):1793-9. PubMed ID: 23422310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High performance bipolar resistive switching memory devices based on Zn2SnO4 nanowires.
    Dong H; Zhang X; Zhao D; Niu Z; Zeng Q; Li J; Cai L; Wang Y; Zhou W; Gao M; Xie S
    Nanoscale; 2012 Apr; 4(8):2571-4. PubMed ID: 22419367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Faradaic currents during electroforming of resistively switching Ag-Ge-Se type electrochemical metallization memory cells.
    Schindler C; Valov I; Waser R
    Phys Chem Chem Phys; 2009 Jul; 11(28):5974-9. PubMed ID: 19588020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical models of size-dependent nanofilament formation and rupture in NiO resistive switching memories.
    Ielmini D; Nardi F; Cagli C
    Nanotechnology; 2011 Jun; 22(25):254022. PubMed ID: 21572207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning the switching behavior of binary oxide-based resistive memory devices by inserting an ultra-thin chemically active metal nanolayer: a case study on the Ta2O5-Ta system.
    Gao S; Zeng F; Wang M; Wang G; Song C; Pan F
    Phys Chem Chem Phys; 2015 May; 17(19):12849-56. PubMed ID: 25907552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Switching operation and degradation of resistive random access memory composed of tungsten oxide and copper investigated using in-situ TEM.
    Arita M; Takahashi A; Ohno Y; Nakane A; Tsurumaki-Fukuchi A; Takahashi Y
    Sci Rep; 2015 Nov; 5():17103. PubMed ID: 26611856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of conducting filament and non-filament regions in the Ta
    Park TH; Kim HJ; Park WY; Kim SG; Choi BJ; Hwang CS
    Nanoscale; 2017 May; 9(18):6010-6019. PubMed ID: 28443901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: TiO2, NiO and Pr0.7Ca0.3MnO3.
    Magyari-Köpe B; Tendulkar M; Park SG; Lee HD; Nishi Y
    Nanotechnology; 2011 Jun; 22(25):254029. PubMed ID: 21572196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the local temperature of conductive filaments in resistive switching materials.
    Yalon E; Cohen S; Gavrilov A; Ritter D
    Nanotechnology; 2012 Nov; 23(46):465201. PubMed ID: 23093285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opportunity of spinel ferrite materials in nonvolatile memory device applications based on their resistive switching performances.
    Hu W; Qin N; Wu G; Lin Y; Li S; Bao D
    J Am Chem Soc; 2012 Sep; 134(36):14658-61. PubMed ID: 22931305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of bipolar resistive switching and the time-dependent SET process in silver sulfide/silver thin films and nanowire array structures.
    Pi C; Ren Y; Chim WK
    Nanotechnology; 2010 Feb; 21(8):85709. PubMed ID: 20097983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of resistive switching in Cu-doped HfO2 thin film for multilevel non-volatile memory applications.
    Wang Y; Liu Q; Long S; Wang W; Wang Q; Zhang M; Zhang S; Li Y; Zuo Q; Yang J; Liu M
    Nanotechnology; 2010 Jan; 21(4):045202. PubMed ID: 20009169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncovering Two Competing Switching Mechanisms for Epitaxial and Ultrathin Strontium Titanate-Based Resistive Switching Bits.
    Kubicek M; Schmitt R; Messerschmitt F; Rupp JL
    ACS Nano; 2015 Nov; 9(11):10737-48. PubMed ID: 26448096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the Coexistence of Two Bipolar Resistive Switching Modes with Opposite Polarity in Pt/TiO
    Zhang H; Yoo S; Menzel S; Funck C; Cüppers F; Wouters DJ; Hwang CS; Waser R; Hoffmann-Eifert S
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29766-29778. PubMed ID: 30088755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forming-Free, Low-Voltage, and High-Speed Resistive Switching in Ag/Oxygen-Deficient Vanadium Oxide(VO
    Ryu J; Park K; Sahu DP; Yoon TS
    ACS Appl Mater Interfaces; 2024 May; 16(20):26450-26459. PubMed ID: 38739419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.