These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 20865151)

  • 1. Inverse pH regulation of plant and fungal sucrose transporters: a mechanism to regulate competition for sucrose at the host/pathogen interface?
    Wippel K; Wittek A; Hedrich R; Sauer N
    PLoS One; 2010 Aug; 5(8):e12429. PubMed ID: 20865151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The fungal UmSrt1 and maize ZmSUT1 sucrose transporters battle for plant sugar resources.
    Wittek A; Dreyer I; Al-Rasheid KAS; Sauer N; Hedrich R; Geiger D
    J Integr Plant Biol; 2017 Jun; 59(6):422-435. PubMed ID: 28296205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel high-affinity sucrose transporter is required for virulence of the plant pathogen Ustilago maydis.
    Wahl R; Wippel K; Goos S; Kämper J; Sauer N
    PLoS Biol; 2010 Feb; 8(2):e1000303. PubMed ID: 20161717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sucrose- and H-dependent charge movements associated with the gating of sucrose transporter ZmSUT1.
    Carpaneto A; Koepsell H; Bamberg E; Hedrich R; Geiger D
    PLoS One; 2010 Sep; 5(9):e12605. PubMed ID: 20838661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Living the sweet life: how does a plant pathogenic fungus acquire sugar from plants?
    Talbot NJ
    PLoS Biol; 2010 Feb; 8(2):e1000308. PubMed ID: 20161721
    [No Abstract]   [Full Text] [Related]  

  • 6. Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells.
    Doehlemann G; van der Linde K; Assmann D; Schwammbach D; Hof A; Mohanty A; Jackson D; Kahmann R
    PLoS Pathog; 2009 Feb; 5(2):e1000290. PubMed ID: 19197359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the Ustilago maydis/Zea mays pathosystem: transcriptional responses and novel functional aspects of a fungal calcineurin regulatory B subunit.
    Donaldson ME; Meng S; Gagarinova A; Babu M; Lambie SC; Swiadek AA; Saville BJ
    Fungal Genet Biol; 2013; 58-59():91-104. PubMed ID: 23973481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport activity of rice sucrose transporters OsSUT1 and OsSUT5.
    Sun Y; Reinders A; LaFleur KR; Mori T; Ward JM
    Plant Cell Physiol; 2010 Jan; 51(1):114-22. PubMed ID: 19965875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neofunctionalization of the secreted Tin2 effector in the fungal pathogen Ustilago maydis.
    Tanaka S; Schweizer G; Rössel N; Fukada F; Thines M; Kahmann R
    Nat Microbiol; 2019 Feb; 4(2):251-257. PubMed ID: 30510169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sucrose Transporter ZmSut1 Expression and Localization Uncover New Insights into Sucrose Phloem Loading.
    Baker RF; Leach KA; Boyer NR; Swyers MJ; Benitez-Alfonso Y; Skopelitis T; Luo A; Sylvester A; Jackson D; Braun DM
    Plant Physiol; 2016 Nov; 172(3):1876-1898. PubMed ID: 27621426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport and sorting of the solanum tuberosum sucrose transporter SUT1 is affected by posttranslational modification.
    Krügel U; Veenhoff LM; Langbein J; Wiederhold E; Liesche J; Friedrich T; Grimm B; Martinoia E; Poolman B; Kühn C
    Plant Cell; 2008 Sep; 20(9):2497-513. PubMed ID: 18790827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phloem-localized, proton-coupled sucrose carrier ZmSUT1 mediates sucrose efflux under the control of the sucrose gradient and the proton motive force.
    Carpaneto A; Geiger D; Bamberg E; Sauer N; Fromm J; Hedrich R
    J Biol Chem; 2005 Jun; 280(22):21437-43. PubMed ID: 15805107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Parasitic strategy and regulation mechanism of Ustilago maydis - A review].
    Li Z; Yan L; Yan Z
    Wei Sheng Wu Xue Bao; 2016 Sep; 56(9):1385-97. PubMed ID: 29738207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The secretome of the maize pathogen Ustilago maydis.
    Mueller O; Kahmann R; Aguilar G; Trejo-Aguilar B; Wu A; de Vries RP
    Fungal Genet Biol; 2008 Aug; 45 Suppl 1():S63-70. PubMed ID: 18456523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional analysis of the pH responsive pathway Pal/Rim in the phytopathogenic basidiomycete Ustilago maydis.
    Cervantes-Chávez JA; Ortiz-Castellanos L; Tejeda-Sartorius M; Gold S; Ruiz-Herrera J
    Fungal Genet Biol; 2010 May; 47(5):446-57. PubMed ID: 20153837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental approaches to investigate effector translocation into host cells in the Ustilago maydis/maize pathosystem.
    Tanaka S; Djamei A; Presti LL; Schipper K; Winterberg S; Amati S; Becker D; Büchner H; Kumlehn J; Reissmann S; Kahmann R
    Eur J Cell Biol; 2015; 94(7-9):349-58. PubMed ID: 26118724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arabidopsis SUC1 loads the phloem in suc2 mutants when expressed from the SUC2 promoter.
    Wippel K; Sauer N
    J Exp Bot; 2012 Jan; 63(2):669-79. PubMed ID: 22021573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational changes represent the rate-limiting step in the transport cycle of maize sucrose transporter1.
    Derrer C; Wittek A; Bamberg E; Carpaneto A; Dreyer I; Geiger D
    Plant Cell; 2013 Aug; 25(8):3010-21. PubMed ID: 23964025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo transport of three radioactive [
    Tran TM; Hampton CS; Brossard TW; Harmata M; Robertson JD; Jurisson SS; Braun DM
    Plant Physiol Biochem; 2017 Jun; 115():1-11. PubMed ID: 28300727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sugar Partitioning between
    Sosso D; van der Linde K; Bezrutczyk M; Schuler D; Schneider K; Kämper J; Walbot V
    Plant Physiol; 2019 Apr; 179(4):1373-1385. PubMed ID: 30593452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.