BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

515 related articles for article (PubMed ID: 20865187)

  • 1. Recent progress in morphology control of supramolecular fullerene assemblies and its applications.
    Babu SS; Möhwald H; Nakanishi T
    Chem Soc Rev; 2010 Nov; 39(11):4021-35. PubMed ID: 20865187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supramolecular soft and hard materials based on self-assembly algorithms of alkyl-conjugated fullerenes.
    Nakanishi T
    Chem Commun (Camb); 2010 May; 46(20):3425-36. PubMed ID: 20458394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supramolecular [60]fullerene chemistry on surfaces.
    Bonifazi D; Enger O; Diederich F
    Chem Soc Rev; 2007 Feb; 36(2):390-414. PubMed ID: 17264939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amphiphilic poly(p-phenylene)-driven multiscale assembly of fullerenes to nanowhiskers.
    Nurmawati MH; Ajikumar PK; Renu R; Sow CH; Valiyaveettil S
    ACS Nano; 2008 Jul; 2(7):1429-36. PubMed ID: 19206311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and optical properties of fullerene/ferrocene hybrid hexagonal nanosheets and large-scale production of fullerene hexagonal nanosheets.
    Wakahara T; Sathish M; Miyazawa K; Hu C; Tateyama Y; Nemoto Y; Sasaki T; Ito O
    J Am Chem Soc; 2009 Jul; 131(29):9940-4. PubMed ID: 19569649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable one-, two-, and three-dimensional self-assemblies from an acceptor-donor fullerene-N,N-dimethylaminoazobenzene dyad: interfacial geometry and temporal evolution.
    Kumar KS; Patnaik A
    Langmuir; 2011 Sep; 27(17):11017-25. PubMed ID: 21766824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stereochemistry-dependent, mechanoresponsive supramolecular host assemblies for fullerenes: a guest-induced enhancement of thixotropy.
    Dawn A; Shiraki T; Ichikawa H; Takada A; Takahashi Y; Tsuchiya Y; Lien le TN; Shinkai S
    J Am Chem Soc; 2012 Feb; 134(4):2161-71. PubMed ID: 22206456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supramolecular nano networks formed by molecular-recognition-directed self-assembly of ditopic calix[5]arene and dumbbell [60]fullerene.
    Haino T; Matsumoto Y; Fukazawa Y
    J Am Chem Soc; 2005 Jun; 127(25):8936-7. PubMed ID: 15969555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fullerene derivatives that bear aliphatic chains as unusual surfactants: hierarchical self-organization, diverse morphologies, and functions.
    Asanuma H; Li H; Nakanishi T; Möhwald H
    Chemistry; 2010 Aug; 16(31):9330-8. PubMed ID: 20583065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supramolecular assemblies of tripodal porphyrin hosts and C60.
    Tong LH; Wietor JL; Clegg W; Raithby PR; Pascu SI; Sanders JK
    Chemistry; 2008; 14(10):3035-44. PubMed ID: 18293350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supramolecular architectures generated by self-assembly of guanosine derivatives.
    Davis JT; Spada GP
    Chem Soc Rev; 2007 Feb; 36(2):296-313. PubMed ID: 17264931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liquid-crystalline hybrid materials based on [60]fullerene and bent-core structures.
    Vergara J; Barberá J; Serrano JL; Ros MB; Sebastián N; de la Fuente R; López DO; Fernández G; Sánchez L; Martín N
    Angew Chem Int Ed Engl; 2011 Dec; 50(52):12523-8. PubMed ID: 22057795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembly of supramolecular fullerene ribbons via hydrogen-bonding interactions and their impact on fullerene electronic interactions and charge carrier mobility.
    Chu CC; Raffy G; Ray D; Del Guerzo A; Kauffmann B; Wantz G; Hirsch L; Bassani DM
    J Am Chem Soc; 2010 Sep; 132(36):12717-23. PubMed ID: 20731396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flowerlike supramolecular architectures assembled from C60 equipped with a pyridine substituent.
    Zhang X; Nakanishi T; Ogawa T; Saeki A; Seki S; Shen Y; Yamauchi Y; Takeuchi M
    Chem Commun (Camb); 2010 Dec; 46(46):8752-4. PubMed ID: 20967350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the supramolecular self-assembly of the fullerene derivative PCBM on gold surfaces.
    Wang Y; Alcamí M; Martín F
    Chemphyschem; 2008 May; 9(7):1030-5. PubMed ID: 18404763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. STM investigation of temperature-dependent two-dimensional supramolecular architectures of C60 and amino-tetraphenylporphyrin on Ag(110).
    Di Marino M; Sedona F; Sambi M; Carofiglio T; Lubian E; Casarin M; Tondello E
    Langmuir; 2010 Feb; 26(4):2466-72. PubMed ID: 19810724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Creating a uniform distribution of fullerene C60 nanorods in a polymer matrix and its photovoltaic applications.
    Lu G; Li L; Yang X
    Small; 2008 May; 4(5):601-6. PubMed ID: 18446798
    [No Abstract]   [Full Text] [Related]  

  • 18. Synthesis of a new ligand for transition metal-fullerene supramolecular systems.
    Deye JR; Shiveley AN; Goins SM; Rizzo L; Oehrle SA; Walters KA
    Inorg Chem; 2008 Jan; 47(1):23-5. PubMed ID: 18062688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surfactant-free water-processable photoconductive all-carbon composite.
    Tung VC; Huang JH; Tevis I; Kim F; Kim J; Chu CW; Stupp SI; Huang J
    J Am Chem Soc; 2011 Apr; 133(13):4940-7. PubMed ID: 21391674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly of thiophene- and furan-appended methanofullerenes with poly(3-hexylthiophene) in organic solar cells.
    Troshin PA; Khakina EA; Egginger M; Goryachev AE; Troyanov SI; Fuchsbauer A; Peregudov AS; Lyubovskaya RN; Razumov VF; Sariciftci NS
    ChemSusChem; 2010 Mar; 3(3):356-66. PubMed ID: 20077464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.