These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 20865398)

  • 1. Cytochrome C stabilization and immobilization in aerogels.
    Harper-Leatherman AS; Wallace JM; Rolison DR
    Methods Mol Biol; 2011; 679():193-205. PubMed ID: 20865398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytochrome c Stabilization and Immobilization in Aerogels.
    Harper-Leatherman AS; Wallace JM; Rolison DR
    Methods Mol Biol; 2017; 1504():149-163. PubMed ID: 27770420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simplified procedure for encapsulating cytochrome c in silica aerogel nanoarchitectures while retaining gas-phase bioactivity.
    Harper-Leatherman AS; Iftikhar M; Ndoi A; Scappaticci SJ; Lisi GP; Buzard KL; Garvey EM
    Langmuir; 2012 Oct; 28(41):14756-65. PubMed ID: 22924640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silver-colloid-nucleated cytochrome c superstructures encapsulated in silica nanoarchitectures.
    Wallace JM; Dening BM; Eden KB; Stroud RM; Long JW; Rolison DR
    Langmuir; 2004 Oct; 20(21):9276-81. PubMed ID: 15461518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytochrome c superstructure biocomposite nucleated by gold nanoparticle: thermal stability and voltammetric behavior.
    Jiang X; Shang L; Wang Y; Dong S
    Biomacromolecules; 2005; 6(6):3030-6. PubMed ID: 16283723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme stabilization and immobilization by sol-gel entrapment.
    David AE; Yang AJ; Wang NS
    Methods Mol Biol; 2011; 679():49-66. PubMed ID: 20865388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fundamental studies of the cytochrome c immobilization by the potential cycling method on nanometer-scale nickel oxide surfaces.
    Moghaddam AB; Ganjali MR; Dinarvand R; Saboury AA; Razavi T; Moosavi-Movahedi AA; Norouzi P
    Biophys Chem; 2007 Sep; 129(2-3):259-68. PubMed ID: 17628321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox Cycling within Nanoparticle-Nucleated Protein Superstructures: Electron Transfer between Nanoparticulate Gold, Molecular Reductant, and Cytochrome
    Harper-Leatherman AS; Wallace JM; Long JW; Rhodes CP; Graffam ME; Abunar BH; Rolison DR
    J Phys Chem B; 2021 Feb; 125(7):1735-1745. PubMed ID: 33576630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control over binding stoichiometry and specificity in the supramolecular immobilization of cytochrome c on a molecular printboard.
    Ludden MJ; Sinha JK; Wittstock G; Reinhoudt DN; Huskens J
    Org Biomol Chem; 2008 May; 6(9):1553-7. PubMed ID: 18421386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mesoporous silica nanoparticle with charge-convertible pore walls for efficient intracellular protein delivery.
    Park HS; Kim CW; Lee HJ; Choi JH; Lee SG; Yun YP; Kwon IC; Lee SJ; Jeong SY; Lee SC
    Nanotechnology; 2010 Jun; 21(22):225101. PubMed ID: 20453291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic enhancement of visible-light water splitting with Au-TiO2 composite aerogels.
    DeSario PA; Pietron JJ; DeVantier DE; Brintlinger TH; Stroud RM; Rolison DR
    Nanoscale; 2013 Sep; 5(17):8073-83. PubMed ID: 23877169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization and electrochemical redox behavior of cytochrome c on fullerene film-modified electrodes.
    D'Souza F; Rogers LM; O'Dell ES; Kochman A; Kutner W
    Bioelectrochemistry; 2005 Apr; 66(1-2):35-40. PubMed ID: 15833700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilization of lipase on methyl-modified silica aerogels by physical adsorption.
    Gao S; Wang Y; Wang T; Luo G; Dai Y
    Bioresour Technol; 2009 Jan; 100(2):996-9. PubMed ID: 18684619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Encapsulating Cytochrome c in Silica Aerogel Nanoarchitectures without Metal Nanoparticles while Retaining Gas-phase Bioactivity.
    Harper-Leatherman AS; Pacer ER; Kosciuszek ND
    J Vis Exp; 2016 Mar; (109):e53802. PubMed ID: 26967257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytochrome C on silica nanoparticles: influence of nanoparticle size on protein structure, stability, and activity.
    Shang W; Nuffer JH; Muñiz-Papandrea VA; Colón W; Siegel RW; Dordick JS
    Small; 2009 Apr; 5(4):470-6. PubMed ID: 19189325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme nanoparticle fabrication: magnetic nanoparticle synthesis and enzyme immobilization.
    Johnson PA; Park HJ; Driscoll AJ
    Methods Mol Biol; 2011; 679():183-91. PubMed ID: 20865397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple approach for efficient encapsulation of enzyme in silica matrix with retained bioactivity.
    Yang S; Jia WZ; Qian QY; Zhou YG; Xia XH
    Anal Chem; 2009 May; 81(9):3478-84. PubMed ID: 19354263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Layer-by-layer assembly of electro-active gold nanoparticle/cytochrome c multilayers.
    Bonk SM; Lisdat F
    Biosens Bioelectron; 2009 Dec; 25(4):739-44. PubMed ID: 19747815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silica-encapsulated nanomagnetic particle as a new recoverable biocatalyst carrier.
    Tsang SC; Yu CH; Gao X; Tam K
    J Phys Chem B; 2006 Aug; 110(34):16914-22. PubMed ID: 16927981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sol-Gel assembly of CdSe nanoparticles to form porous aerogel networks.
    Arachchige IU; Brock SL
    J Am Chem Soc; 2006 Jun; 128(24):7964-71. PubMed ID: 16771511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.