These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 20865526)

  • 1. Toward optimizing the cache performance of suffix trees for sequence analysis algorithms suffix tree cache performance optimization.
    Lee C; Huang CH
    Adv Exp Med Biol; 2010; 680():411-7. PubMed ID: 20865526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TRELLIS+: an effective approach for indexing genome-scale sequences using suffix trees.
    Phoophakdee B; Zaki MJ
    Pac Symp Biocomput; 2008; ():90-101. PubMed ID: 18229678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compressed suffix tree--a basis for genome-scale sequence analysis.
    Välimäki N; Gerlach W; Dixit K; Mäkinen V
    Bioinformatics; 2007 Mar; 23(5):629-30. PubMed ID: 17237063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cache-oblivious dynamic programming for bioinformatics.
    Chowdhury RA; Le HS; Ramachandran V
    IEEE/ACM Trans Comput Biol Bioinform; 2010; 7(3):495-510. PubMed ID: 20671320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repeats identification using improved suffix trees.
    Huo H; Wang X; Stojkovic V
    Int J Comput Biol Drug Des; 2009; 2(3):264-77. PubMed ID: 20090164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. mkESA: enhanced suffix array construction tool.
    Homann R; Fleer D; Giegerich R; Rehmsmeier M
    Bioinformatics; 2009 Apr; 25(8):1084-5. PubMed ID: 19246510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. essaMEM: finding maximal exact matches using enhanced sparse suffix arrays.
    Vyverman M; De Baets B; Fack V; Dawyndt P
    Bioinformatics; 2013 Mar; 29(6):802-4. PubMed ID: 23349213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient maximal repeat finding using the burrows-wheeler transform and wavelet tree.
    Külekci MO; Vitter JS; Xu B
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(2):421-9. PubMed ID: 21968959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of significant patterns by compression algorithms: the case of approximate tandem repeats in DNA sequences.
    Rivals E; Delgrange O; Delahaye JP; Dauchet M; Delorme MO; Hénaut A; Ollivier E
    Comput Appl Biosci; 1997 Apr; 13(2):131-6. PubMed ID: 9146959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suffix tree searcher: exploration of common substrings in large DNA sequence sets.
    Minkley D; Whitney MJ; Lin SH; Barsky MG; Kelly C; Upton C
    BMC Res Notes; 2014 Jul; 7():466. PubMed ID: 25053142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A bioinformatician's guide to the forefront of suffix array construction algorithms.
    Shrestha AM; Frith MC; Horton P
    Brief Bioinform; 2014 Mar; 15(2):138-54. PubMed ID: 24413184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Storage and retrieval of highly repetitive sequence collections.
    Mäkinen V; Navarro G; Sirén J; Välimäki N
    J Comput Biol; 2010 Mar; 17(3):281-308. PubMed ID: 20377446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A clustering method for repeat analysis in DNA sequences.
    Volfovsky N; Haas BJ; Salzberg SL
    Genome Biol; 2001; 2(8):RESEARCH0027. PubMed ID: 11532211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cache-Oblivious parallel SIMD Viterbi decoding for sequence search in HMMER.
    Ferreira M; Roma N; Russo LM
    BMC Bioinformatics; 2014 May; 15():165. PubMed ID: 24884826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Searching maximal degenerate motifs guided by a compact suffix tree.
    Jiang H; Zhao Y; Chen W; Zheng W
    Adv Exp Med Biol; 2010; 680():19-26. PubMed ID: 20865482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Indexing huge genome sequences for solving various problems.
    Sadakane K; Shibuya T
    Genome Inform; 2001; 12():175-83. PubMed ID: 11791236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using suffix tree to discover complex repetitive patterns in DNA sequences.
    He D
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3474-7. PubMed ID: 17945779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parallel continuous flow: a parallel suffix tree construction tool for whole genomes.
    Comin M; Farreras M
    J Comput Biol; 2014 Apr; 21(4):330-44. PubMed ID: 24597675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A polynomial-time algorithm computing lower and upper bounds of the rooted subtree prune and regraft distance.
    Kannan L; Li H; Mushegian A
    J Comput Biol; 2011 May; 18(5):743-57. PubMed ID: 21166560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PhyloGibbs: a Gibbs sampling motif finder that incorporates phylogeny.
    Siddharthan R; Siggia ED; van Nimwegen E
    PLoS Comput Biol; 2005 Dec; 1(7):e67. PubMed ID: 16477324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.