These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 20865535)

  • 1. GPU acceleration of Dock6's Amber scoring computation.
    Yang H; Zhou Q; Li B; Wang Y; Luan Z; Qian D; Li H
    Adv Exp Med Biol; 2010; 680():497-511. PubMed ID: 20865535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uni-Dock: GPU-Accelerated Docking Enables Ultralarge Virtual Screening.
    Yu Y; Cai C; Wang J; Bo Z; Zhu Z; Zheng H
    J Chem Theory Comput; 2023 Jun; 19(11):3336-3345. PubMed ID: 37125970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward fully automated high performance computing drug discovery: a massively parallel virtual screening pipeline for docking and molecular mechanics/generalized Born surface area rescoring to improve enrichment.
    Zhang X; Wong SE; Lightstone FC
    J Chem Inf Model; 2014 Jan; 54(1):324-37. PubMed ID: 24358939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DiSCuS: an open platform for (not only) virtual screening results management.
    Wójcikowski M; Zielenkiewicz P; Siedlecki P
    J Chem Inf Model; 2014 Jan; 54(1):347-54. PubMed ID: 24364790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive assessment of flexible-ligand docking algorithms: current effectiveness and challenges.
    Huang SY
    Brief Bioinform; 2018 Sep; 19(5):982-994. PubMed ID: 28334282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acceleration of High Angular Momentum Electron Repulsion Integrals and Integral Derivatives on Graphics Processing Units.
    Miao Y; Merz KM
    J Chem Theory Comput; 2015 Apr; 11(4):1449-62. PubMed ID: 26574356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of a grid service-based platform for in silico protein-ligand screenings.
    Levesque MJ; Ichikawa K; Date S; Haga JH
    Comput Methods Programs Biomed; 2009 Jan; 93(1):73-82. PubMed ID: 18771812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fast forward projection using multithreads for multirays on GPUs in medical image reconstruction.
    Chou CY; Chuo YY; Hung Y; Wang W
    Med Phys; 2011 Jul; 38(7):4052-65. PubMed ID: 21859004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High performance computing for deformable image registration: towards a new paradigm in adaptive radiotherapy.
    Samant SS; Xia J; Muyan-Ozcelik P; Owens JD
    Med Phys; 2008 Aug; 35(8):3546-53. PubMed ID: 18777915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parallelized computation for computer simulation of electrocardiograms using personal computers with multi-core CPU and general-purpose GPU.
    Shen W; Wei D; Xu W; Zhu X; Yuan S
    Comput Methods Programs Biomed; 2010 Oct; 100(1):87-96. PubMed ID: 20674066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acceleration method of 3D medical images registration based on compute unified device architecture.
    Meng L
    Biomed Mater Eng; 2014; 24(1):1109-16. PubMed ID: 24212003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CUDA-based real time surgery simulation.
    Liu Y; De S
    Stud Health Technol Inform; 2008; 132():260-2. PubMed ID: 18391300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vina-GPU 2.0: Further Accelerating AutoDock Vina and Its Derivatives with Graphics Processing Units.
    Ding J; Tang S; Mei Z; Wang L; Huang Q; Hu H; Ling M; Wu J
    J Chem Inf Model; 2023 Apr; 63(7):1982-1998. PubMed ID: 36941232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerating molecular docking calculations using graphics processing units.
    Korb O; Stützle T; Exner TE
    J Chem Inf Model; 2011 Apr; 51(4):865-76. PubMed ID: 21434638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GPU-Accelerated Flexible Molecular Docking.
    Fan M; Wang J; Jiang H; Feng Y; Mahdavi M; Madduri K; Kandemir MT; Dokholyan NV
    J Phys Chem B; 2021 Feb; 125(4):1049-1060. PubMed ID: 33497567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues.
    Ren N; Liang J; Qu X; Li J; Lu B; Tian J
    Opt Express; 2010 Mar; 18(7):6811-23. PubMed ID: 20389700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterogeneous computing architecture for fast detection of SNP-SNP interactions.
    Sluga D; Curk T; Zupan B; Lotric U
    BMC Bioinformatics; 2014 Jun; 15():216. PubMed ID: 24964802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerating AutoDock Vina with GPUs.
    Tang S; Chen R; Lin M; Lin Q; Zhu Y; Ding J; Hu H; Ling M; Wu J
    Molecules; 2022 May; 27(9):. PubMed ID: 35566391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GPU technology as a platform for accelerating local complexity analysis of protein sequences.
    Papadopoulos A; Kirmitzoglou I; Promponas VJ; Theocharides T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2684-7. PubMed ID: 24110280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GPU-accelerated multitiered iterative phasing algorithm for fluctuation X-ray scattering.
    Kommera PR; Ramakrishnaiah V; Sweeney C; Donatelli J; Zwart PH
    J Appl Crystallogr; 2021 Aug; 54(Pt 4):1179-1188. PubMed ID: 34429723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.