BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 20865609)

  • 1. Effects of a lower-body exoskeleton device on metabolic cost and gait biomechanics during load carriage.
    Gregorczyk KN; Hasselquist L; Schiffman JM; Bensel CK; Obusek JP; Gutekunst DJ
    Ergonomics; 2010 Oct; 53(10):1263-75. PubMed ID: 20865609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effectiveness of a passive military exoskeleton in off-loading weight during static and dynamic load carriage: A randomised cross-over study.
    Kong PW; Koh AH; Ho MYM; Iskandar MNS; Lim CXE
    Appl Ergon; 2024 Sep; 119():104293. PubMed ID: 38703721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic Costs of Walking with Weighted Vests.
    Looney DP; Lavoie EM; Notley SR; Holden LD; Arcidiacono DM; Potter AW; Silder A; Pasiakos SM; Arellano CJ; Karis AJ; Pryor JL; Santee WR; Friedl KE
    Med Sci Sports Exerc; 2024 Jun; 56(6):1177-1185. PubMed ID: 38291646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gender Differences in Energy Expenditure During Walking With Backpack and Double-Pack Loads.
    Li SSW; Chan OHT; Ng TY; Kam LH; Ng CY; Chung WC; Chow DHK
    Hum Factors; 2018 Sep; ():18720818799190. PubMed ID: 30216092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the Influence of Structured Familiarization to an Adjustable, Passive Load-Bearing Exoskeleton on Oxygen Consumption and Lower Limb Muscle Activation During Walking.
    Diamond-Ouellette G; Le Quang M; Karakolis T; Bouyer LJ; Best KL
    IEEE Trans Neural Syst Rehabil Eng; 2024 Jun; PP():. PubMed ID: 38935466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Himalayan porter's specialization: metabolic power, economy, efficiency and skill.
    Minetti AE; Formenti F; Ardigò LP
    Proc Biol Sci; 2006 Nov; 273(1602):2791-7. PubMed ID: 17015318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Center of Pressure, Vertical Ground Reaction Forces, and Neuromuscular Responses of Special-Forces Soldiers to 43-km Load Carriage in the Field.
    Scales J; O'Driscoll JM; Coleman D; Giannoglou D; Gkougkoulis I; Ntontis I; Zisopoulou C; Brown M
    J Appl Biomech; 2020 Oct; 36(5):307-312. PubMed ID: 32796136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generating electricity while walking with a medial-lateral oscillating load carriage device.
    Martin JP; Li Q
    R Soc Open Sci; 2019 Jul; 6(7):182021. PubMed ID: 31417695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tapping Into Skeletal Muscle Biomechanics for Design and Control of Lower Limb Exoskeletons: A Narrative Review.
    Mahdian ZS; Wang H; Refai MIM; Durandau G; Sartori M; MacLean MK
    J Appl Biomech; 2023 Oct; 39(5):318-333. PubMed ID: 37751903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical and physiological effects of female soldier load carriage: A scoping review.
    Wendland R; Bossi L; Oliver M
    Appl Ergon; 2022 Nov; 105():103837. PubMed ID: 35803166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Running With an Elastic Lower Limb Exoskeleton.
    Cherry MS; Kota S; Young A; Ferris DP
    J Appl Biomech; 2016 Jun; 32(3):269-77. PubMed ID: 26694976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of passive ankle exoskeletons on neuromuscular function during exaggerated standing sway.
    Farris DJ; Po JCN; Yee J; Williamson JL; Dick TJM
    R Soc Open Sci; 2024 May; 11(5):230590. PubMed ID: 38716327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exoskeletal solutions to enable mobility with a lower leg fracture in austere environments.
    Johnson WB; Young A; Goldman S; Wilson J; Alderete JF; Childers WL
    Wearable Technol; 2023; 4():e5. PubMed ID: 38487779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and testing of the aerial porter exoskeleton.
    Martin WB; Boehler A; Hollander KW; Kinney D; Hitt JK; Kudva J; Sugar TG
    Wearable Technol; 2022; 3():e1. PubMed ID: 38486913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing optimized exoskeleton assistance of the hip, knee, and ankle in single and multi-joint configurations.
    Franks PW; Bryan GM; Martin RM; Reyes R; Lakmazaheri AC; Collins SH
    Wearable Technol; 2021; 2():e16. PubMed ID: 38486633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Opportunities and challenges in the development of exoskeletons for locomotor assistance.
    Siviy C; Baker LM; Quinlivan BT; Porciuncula F; Swaminathan K; Awad LN; Walsh CJ
    Nat Biomed Eng; 2023 Apr; 7(4):456-472. PubMed ID: 36550303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gait Recognition for Lower Limb Exoskeletons Based on Interactive Information Fusion.
    Chen W; Li J; Zhu S; Zhang X; Men Y; Wu H
    Appl Bionics Biomech; 2022; 2022():9933018. PubMed ID: 35378794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spine-like Joint Link Mechanism to Design Wearable Assistive Devices.
    Kim JY; Cho JS; Kim JH; Kim JT; Han SC; Park SS; Yoon HU
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward Predicting Human Performance Outcomes From Wearable Technologies: A Computational Modeling Approach.
    Brunyé TT; Yau K; Okano K; Elliott G; Olenich S; Giles GE; Navarro E; Elkin-Frankston S; Young AL; Miller EL
    Front Physiol; 2021; 12():738973. PubMed ID: 34566701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The comparison of the effect of innovative designed storing-restoring hybrid passive AFO versus posterior leaf spring AFO on ankle joint kinematic in drop foot patients: A case series using a single subject design.
    Pourhoseingholi E; Kamali M; Saeedi H; Jalali M
    Med J Islam Repub Iran; 2020; 34():173. PubMed ID: 33816372
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.