These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 20865780)

  • 1. Integrative modeling of the cardiac ventricular myocyte.
    Winslow RL; Cortassa S; O'Rourke B; Hashambhoy YL; Rice JJ; Greenstein JL
    Wiley Interdiscip Rev Syst Biol Med; 2011; 3(4):392-413. PubMed ID: 20865780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stretch-activated current in human atrial myocytes and Na
    Zhan H; Zhang J; Jiao A; Wang Q
    Biomed Eng Online; 2019 Oct; 18(1):104. PubMed ID: 31653259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Modeling of Cardiac Electrophysiology.
    Ni H; Grandi E
    Methods Mol Biol; 2024; 2735():63-103. PubMed ID: 38038844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computational model integrating electrophysiology, contraction, and mitochondrial bioenergetics in the ventricular myocyte.
    Cortassa S; Aon MA; O'Rourke B; Jacques R; Tseng HJ; Marbán E; Winslow RL
    Biophys J; 2006 Aug; 91(4):1564-89. PubMed ID: 16679365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiac systems biology and parameter sensitivity analysis: intracellular Ca2+ regulatory mechanisms in mouse ventricular myocytes.
    Shin SY; Choo SM; Woo SH; Cho KH
    Adv Biochem Eng Biotechnol; 2008; 110():25-45. PubMed ID: 18437298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative analysis of variability in an integrated model of human ventricular electrophysiology and β-adrenergic signaling.
    Gong JQX; Susilo ME; Sher A; Musante CJ; Sobie EA
    J Mol Cell Cardiol; 2020 Jun; 143():96-106. PubMed ID: 32330487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic clamp: a powerful tool in cardiac electrophysiology.
    Wilders R
    J Physiol; 2006 Oct; 576(Pt 2):349-59. PubMed ID: 16873403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical modeling of cardiac growth and remodeling.
    Lee LC; Kassab GS; Guccione JM
    Wiley Interdiscip Rev Syst Biol Med; 2016 May; 8(3):211-26. PubMed ID: 26952285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mathematical treatment of integrated Ca dynamics within the ventricular myocyte.
    Shannon TR; Wang F; Puglisi J; Weber C; Bers DM
    Biophys J; 2004 Nov; 87(5):3351-71. PubMed ID: 15347581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative pharmacology of guinea pig cardiac myocyte and cloned hERG (I(Kr)) channel.
    Davie C; Pierre-Valentin J; Pollard C; Standen N; Mitcheson J; Alexander P; Thong B
    J Cardiovasc Electrophysiol; 2004 Nov; 15(11):1302-9. PubMed ID: 15574182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic pacing reveals the propensity to cardiac action potential alternans and uncovers its underlying dynamics.
    Prudat Y; Madhvani RV; Angelini M; Borgstom NP; Garfinkel A; Karagueuzian HS; Weiss JN; de Lange E; Olcese R; Kucera JP
    J Physiol; 2016 May; 594(9):2537-53. PubMed ID: 26563830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of spiral-wave dynamics and spontaneous activity in a fibroblast/myocyte heterocellular tissue--a computational study.
    Greisas A; Zlochiver S
    IEEE Trans Biomed Eng; 2012 May; 59(5):1398-407. PubMed ID: 22353393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling total heart function.
    Hunter PJ; Pullan AJ; Smaill BH
    Annu Rev Biomed Eng; 2003; 5():147-77. PubMed ID: 14527312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational models of atrial cellular electrophysiology and calcium handling, and their role in atrial fibrillation.
    Heijman J; Erfanian Abdoust P; Voigt N; Nattel S; Dobrev D
    J Physiol; 2016 Feb; 594(3):537-53. PubMed ID: 26582329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical model for β
    Mullins PD; Bondarenko VE
    Am J Physiol Heart Circ Physiol; 2020 Feb; 318(2):H264-H282. PubMed ID: 31834834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear targeting of Akt enhances ventricular function and myocyte contractility.
    Rota M; Boni A; Urbanek K; Padin-Iruegas ME; Kajstura TJ; Fiore G; Kubo H; Sonnenblick EH; Musso E; Houser SR; Leri A; Sussman MA; Anversa P
    Circ Res; 2005 Dec; 97(12):1332-41. PubMed ID: 16293788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of excitation-contraction coupling in mouse cardiac myocytes: integrative analysis with mathematical modelling.
    Koivumäki JT; Korhonen T; Takalo J; Weckström M; Tavi P
    BMC Physiol; 2009 Aug; 9():16. PubMed ID: 19715618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implementation of Contraction to Electrophysiological Ventricular Myocyte Models, and Their Quantitative Characterization via Post-Extrasystolic Potentiation.
    Ji YC; Gray RA; Fenton FH
    PLoS One; 2015; 10(8):e0135699. PubMed ID: 26317204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of transmurally varying myocyte electromechanics in an integrated computational model.
    Campbell SG; Flaim SN; Leem CH; McCulloch AD
    Philos Trans A Math Phys Eng Sci; 2008 Sep; 366(1879):3361-80. PubMed ID: 18593662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic properties of the cardiac L-type Ca2+ channel and its role in myocyte electrophysiology: a theoretical investigation.
    Faber GM; Silva J; Livshitz L; Rudy Y
    Biophys J; 2007 Mar; 92(5):1522-43. PubMed ID: 17158566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.