These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 20865932)

  • 1. [Pattern formation in microcosm: the role of self-assembly in complex biological envelopes development].
    Gabaraeva NI; Hemsley AR
    Zh Obshch Biol; 2010; 71(4):310-36. PubMed ID: 20865932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assembling the thickest plant cell wall: exine development in Echinops (Asteraceae, Cynareae).
    Gabarayeva NI; Polevova SV; Grigorjeva VV; Blackmore S
    Planta; 2018 Aug; 248(2):323-346. PubMed ID: 29725817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The role of genetic control and self-assembly in gametophyte sporoderm ontogeny: hypotheses and experiment].
    Gabaraeva NI
    Ontogenez; 2014; 45(4):219-39. PubMed ID: 25735146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suggested mechanisms underlying pollen wall development in Ambrosia trifida (Asteraceae: Heliantheae).
    Gabarayeva N; Polevova S; Grigorjeva V; Severova E; Volkova O; Blackmore S
    Protoplasma; 2019 Mar; 256(2):555-574. PubMed ID: 30341717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mimicking pollen and spore walls: self-assembly in action.
    Gabarayeva NI; Grigorjeva VV; Shavarda AL
    Ann Bot; 2019 Jul; 123(7):1205-1218. PubMed ID: 31220198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pollen wall ontogeny in Polemonium caeruleum (Polemoniaceae) and suggested underlying mechanisms of development.
    Grigorjeva VV; Gabarayeva N
    Protoplasma; 2018 Jan; 255(1):109-128. PubMed ID: 28667410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembly as the underlying mechanism for exine development in Larix decidua D. C.
    Gabarayeva NI; Grigorjeva VV
    Planta; 2017 Sep; 246(3):471-493. PubMed ID: 28477281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic regulation of sporopollenin synthesis and pollen exine development.
    Ariizumi T; Toriyama K
    Annu Rev Plant Biol; 2011; 62():437-60. PubMed ID: 21275644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sporoderm development in Acer tataricum (Aceraceae): an interpretation.
    Gabarayeva NI; Grigorjeva VV; Rowley JR
    Protoplasma; 2010 Nov; 247(1-2):65-81. PubMed ID: 20431899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ontogenesis in miniature. Pollen wall development in Campanula rapunculoides.
    Gabarayeva NI; Grigorjeva VV; Polevova SV; Britski DA
    Planta; 2023 Jul; 258(2):38. PubMed ID: 37410162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integral insight into pollen wall development: involvement of physical processes in exine ontogeny in Calycanthus floridus L., with an experimental approach.
    Gabarayeva NI; Grigorjeva VV
    Plant J; 2021 Feb; 105(3):736-753. PubMed ID: 33155350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pollen wall development in Hydrangea bretschneiderii Dippel. (Hydrangeaceae): advanced interpretation through physical input, with in vitro experimental verification.
    Grigorjeva VV; Polevova SV; Gabarayeva NI
    Protoplasma; 2021 Mar; 258(2):431-447. PubMed ID: 33141314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial pollen walls simulated by the tandem processes of phase separation and self-assembly in vitro.
    Gabarayeva NI; Grigorjeva VV; Lavrentovich MO
    New Phytol; 2020 Mar; 225(5):1956-1973. PubMed ID: 31705762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Sporopollenin accumulation in Nicotiana tabacum L. microspore wall during its development].
    Matveeva NP; Polevova SV; Smirnova AV; Ermakov IP
    Tsitologiia; 2012; 54(2):176-84. PubMed ID: 22590931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Antioxidant properties of the pollen exine polymer matrix].
    Smirnova AV; Timoffev KN; Breĭgina MA; Matveeva NP; Ermakov IP
    Biofizika; 2012; 57(2):258-63. PubMed ID: 22594282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary stasis of sporopollenin biochemistry revealed by unaltered Pennsylvanian spores.
    Fraser WT; Scott AC; Forbes AES; Glasspool IJ; Plotnick RE; Kenig F; Lomax BH
    New Phytol; 2012 Oct; 196(2):397-401. PubMed ID: 22913758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sporopollenin - Invincible biopolymer for sustainable biomedical applications.
    Maruthi YA; Ramakrishna S
    Int J Biol Macromol; 2022 Dec; 222(Pt B):2957-2965. PubMed ID: 36244536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrastructural characterization of exine development of the transient defective exine 1 mutant suggests the existence of a factor involved in constructing reticulate exine architecture from sporopollenin aggregates.
    Ariizumi T; Kawanabe T; Hatakeyama K; Sato S; Kato T; Tabata S; Toriyama K
    Plant Cell Physiol; 2008 Jan; 49(1):58-67. PubMed ID: 18045813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sporoderm and tapetum development in Eupomatia laurina (Eupomatiaceae). An interpretation.
    Gabarayeva NI; Grigorjeva VV
    Protoplasma; 2014 Nov; 251(6):1321-45. PubMed ID: 24671645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new look at sporoderm ontogeny in Persea americana and the hidden side of development.
    Gabarayeva NI; Grigorjeva VV; Rowley JR
    Ann Bot; 2010 Jun; 105(6):939-55. PubMed ID: 20400758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.