These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

503 related articles for article (PubMed ID: 20866146)

  • 1. Glycine in aqueous solution: solvation shells, interfacial water, and vibrational spectroscopy from ab initio molecular dynamics.
    Sun J; Bousquet D; Forbert H; Marx D
    J Chem Phys; 2010 Sep; 133(11):114508. PubMed ID: 20866146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibrational spectrum of glycine molecule.
    Kumar S; Rai AK; Singh VB; Rai SB
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Sep; 61(11-12):2741-6. PubMed ID: 16043073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vibrational spectra of alpha-amino acids in the zwitterionic state in aqueous solution and the solid state: DFT calculations and the influence of hydrogen bonding.
    Chowdhry BZ; Dines TJ; Jabeen S; Withnall R
    J Phys Chem A; 2008 Oct; 112(41):10333-47. PubMed ID: 18816033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FTIR and Ab initio investigations of the MTBE-water complex.
    Li Z; Singh S
    J Phys Chem A; 2008 Sep; 112(37):8593-9. PubMed ID: 18714958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the origins of core-electron chemical shifts of small biomolecules in aqueous solution: insights from photoemission and ab initio calculations of glycine(aq).
    Ottosson N; Børve KJ; Spångberg D; Bergersen H; Sæthre LJ; Faubel M; Pokapanich W; Öhrwall G; Björneholm O; Winter B
    J Am Chem Soc; 2011 Mar; 133(9):3120-30. PubMed ID: 21319819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ab initio quantum mechanical charge field molecular dynamics simulation of a dilute aqueous HCl solution.
    Kritayakornupong C; Vchirawongkwin V; Rode BM
    J Comput Chem; 2010 Jun; 31(8):1785-92. PubMed ID: 20020473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward theoretical terahertz spectroscopy of glassy aqueous solutions: partially frozen solute-solvent couplings of glycine in water.
    Gupta PK; Esser A; Forbert H; Marx D
    Phys Chem Chem Phys; 2019 Feb; 21(9):4975-4987. PubMed ID: 30758388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and dynamics of the hydration shells of the Zn(2+) ion from ab initio molecular dynamics and combined ab initio and classical molecular dynamics simulations.
    Cauët E; Bogatko S; Weare JH; Fulton JL; Schenter GK; Bylaska EJ
    J Chem Phys; 2010 May; 132(19):194502. PubMed ID: 20499974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ab initio molecular dynamics study of glycine intramolecular proton transfer in water.
    Leung K; Rempe SB
    J Chem Phys; 2005 May; 122(18):184506. PubMed ID: 15918728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding THz spectra of aqueous solutions: glycine in light and heavy water.
    Sun J; Niehues G; Forbert H; Decka D; Schwaab G; Marx D; Havenith M
    J Am Chem Soc; 2014 Apr; 136(13):5031-8. PubMed ID: 24606118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microhydration of protonated glycine: an ab initio family tree.
    Michaux C; Wouters J; Perpète EA; Jacquemin D
    J Phys Chem B; 2008 Feb; 112(8):2430-8. PubMed ID: 18237163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vibrational analysis of glycine radical: a comparative ab initio static and dynamic study.
    Carbonniere P; Dargelos A; Ciofini I; Adamo C; Pouchan C
    Phys Chem Chem Phys; 2009 Jun; 11(21):4375-84. PubMed ID: 19458841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-world predictions from ab initio molecular dynamics simulations.
    Kirchner B; di Dio PJ; Hutter J
    Top Curr Chem; 2012; 307():109-53. PubMed ID: 21842358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vibrational analysis of x-ray absorption fine structure thermal factors by ab initio molecular dynamics: the Zn(II) ion in aqueous solution as a case study.
    Rega N; Brancato G; Petrone A; Caruso P; Barone V
    J Chem Phys; 2011 Feb; 134(7):074504. PubMed ID: 21341856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decomposing total IR spectra of aqueous systems into solute and solvent contributions: a computational approach using maximally localized Wannier orbitals.
    Iftimie R; Tuckerman ME
    J Chem Phys; 2005 Jun; 122(21):214508. PubMed ID: 15974755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibrational energy dynamics of glycine, N-methylacetamide, and benzoate anion in aqueous (D2O) solution.
    Fang Y; Shigeto S; Seong NH; Dlott DD
    J Phys Chem A; 2009 Jan; 113(1):75-84. PubMed ID: 19067563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A first principles investigation of water dipole moment in a defective continuous hydrogen bond network.
    Scipioni R; Schmidt DA; Boero M
    J Chem Phys; 2009 Jan; 130(2):024502. PubMed ID: 19154033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent effects on glycine. I. A supermolecule modeling of tautomerization via intramolecular proton transfer.
    Balta B; Aviyente V
    J Comput Chem; 2003 Nov; 24(14):1789-802. PubMed ID: 12964198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The first step in glycine solvation: the glycine-water complex.
    Balabin RM
    J Phys Chem B; 2010 Nov; 114(46):15075-8. PubMed ID: 20964428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibrational spectroscopic determination of local solvent electric field, solute-solvent electrostatic interaction energy, and their fluctuation amplitudes.
    Lee H; Lee G; Jeon J; Cho M
    J Phys Chem A; 2012 Jan; 116(1):347-57. PubMed ID: 22087732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.