These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 20866218)

  • 1. Duality and Fisher zeros in the two-dimensional Potts model on a square lattice.
    Astorino M; Canfora F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051140. PubMed ID: 20866218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Density of states, Potts zeros, and Fisher zeros of the Q-state Potts model for continuous Q.
    Kim SY; Creswick RJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066107. PubMed ID: 11415173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Density of the Fisher zeros for the three-state and four-state Potts models.
    Kim SY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):016110. PubMed ID: 15324132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roughness exponent in two-dimensional percolation, Potts model, and clock model.
    Redinz JA; Martins ML
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066133. PubMed ID: 11415199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microcanonical finite-size scaling in second-order phase transitions with diverging specific heat.
    Fernandez LA; Gordillo-Guerrero A; Martin-Mayor V; Ruiz-Lorenzo JJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051105. PubMed ID: 20364945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Yang-Lee zeros of the Q-state Potts model on recursive lattices.
    Ghulghazaryan RG; Ananikian NS; Sloot PM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046110. PubMed ID: 12443262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yang-Lee zeros of the two- and three-state Potts model defined on phi3 Feynman diagrams.
    de Albuquerque LC; Dalmazi D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066108. PubMed ID: 16241305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonequilibrium critical relaxation of the order parameter and energy in the two-dimensional ferromagnetic Potts model.
    Nam K; Kim B; Lee SJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 2):056104. PubMed ID: 18643133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical temperatures of the three- and four-state Potts models on the kagome lattice.
    Baek SK; Mäkelä H; Minnhagen P; Kim BJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061104. PubMed ID: 21797299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical manifold of the Potts model: exact results and homogeneity approximation.
    Wu FY; Guo W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):020101. PubMed ID: 23005704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of Potts models with real q and no critical slowing down.
    Gliozzi F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016115. PubMed ID: 12241434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-temperature series expansions for the q-state Potts model on a hypercubic lattice and critical properties of percolation.
    Hellmund M; Janke W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051113. PubMed ID: 17279883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Backbone exponents of the two-dimensional q-state Potts model: a Monte Carlo investigation.
    Deng Y; Blöte HW; Nienhuis B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026114. PubMed ID: 14995527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degenerate ground states and multiple bifurcations in a two-dimensional q-state quantum Potts model.
    Dai YW; Cho SY; Batchelor MT; Zhou HQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062142. PubMed ID: 25019759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geometric properties of two-dimensional critical and tricritical Potts models.
    Deng Y; Blöte HW; Nienhuis B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026123. PubMed ID: 14995536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potts and percolation models on bowtie lattices.
    Ding C; Wang Y; Li Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021125. PubMed ID: 23005740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Random-bond Potts model in the large-q limit.
    Juhász R; Rieger H; Iglói F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056122. PubMed ID: 11736029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ground-state entropy of the potts antiferromagnet with next-nearest-neighbor spin-spin couplings on strips of the square lattice.
    Chang SC; Shrock R
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Oct; 62(4 Pt A):4650-64. PubMed ID: 11089004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymptotic correlation functions in the Q-state Potts model: A universal form for point group C_{4v}.
    Fujimoto M; Otsuka H
    Phys Rev E; 2020 Sep; 102(3-1):032141. PubMed ID: 33076011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exact T=0 partition functions for Potts antiferromagnets on sections of the simple cubic lattice.
    Salas J; Shrock R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 1):011111. PubMed ID: 11461229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.