These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 20866226)

  • 41. Simulations of wave propagation and disorder in 3D non-close-packed colloidal photonic crystals with low refractive index contrast.
    Glushko O; Meisels R; Kuchar F
    Opt Express; 2010 Mar; 18(7):7101-7. PubMed ID: 20389731
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Screened hydrodynamic interaction in a narrow channel.
    Cui B; Diamant H; Lin B
    Phys Rev Lett; 2002 Oct; 89(18):188302. PubMed ID: 12398643
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hydrodynamically induced rhythmic motion of optically driven colloidal particles on a ring.
    Sassa Y; Shibata S; Iwashita Y; Kimura Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061402. PubMed ID: 23005091
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hydrodynamic synchronization of autonomously oscillating optically trapped particles.
    Kavre I; Vilfan A; Babič D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):031002. PubMed ID: 25871041
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A simple patchy colloid model for the phase behavior of lysozyme dispersions.
    Gögelein C; Nägele G; Tuinier R; Gibaud T; Stradner A; Schurtenberger P
    J Chem Phys; 2008 Aug; 129(8):085102. PubMed ID: 19044852
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Precise multipole method for calculating many-body hydrodynamic interactions in a microchannel.
    Kedzierski M; Wajnryb E
    J Chem Phys; 2010 Oct; 133(15):154105. PubMed ID: 20969368
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thermal motion of a holographically trapped SPM-like probe.
    Simpson SH; Hanna S
    Nanotechnology; 2009 Sep; 20(39):395710. PubMed ID: 19726835
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Colloidal diffusion inside a spherical cell.
    Cervantes-Martínez AE; Ramírez-Saito A; Armenta-Calderón R; Ojeda-López MA; Arauz-Lara JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):030402. PubMed ID: 21517444
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Single-cell isolation using a DVD optical pickup.
    Kasukurti A; Potcoava M; Desai SA; Eggleton C; Marr DW
    Opt Express; 2011 May; 19(11):10377-86. PubMed ID: 21643294
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Statistics of particle trajectories at short time intervals reveal fN-scale colloidal forces.
    Sainis SK; Germain V; Dufresne ER
    Phys Rev Lett; 2007 Jul; 99(1):018303. PubMed ID: 17678194
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Long-distance optical guiding of colloidal particles using holographic axilens.
    Ahlawat S; Verma RS; Dasgupta R; Gupta PK
    Appl Opt; 2011 May; 50(13):1933-40. PubMed ID: 21532676
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structure and fragmentation in colloidal artificial molecules and nuclei.
    Olson Reichhardt CJ; Reichhardt C; Bishop AR
    Eur Phys J E Soft Matter; 2007 Jan; 22(1):11-5. PubMed ID: 17334685
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Connecting structural relaxation with the low frequency modes in a hard-sphere colloidal glass.
    Ghosh A; Chikkadi V; Schall P; Bonn D
    Phys Rev Lett; 2011 Oct; 107(18):188303. PubMed ID: 22107681
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Detection of forces and displacements along the axial direction in an optical trap.
    Deufel C; Wang MD
    Biophys J; 2006 Jan; 90(2):657-67. PubMed ID: 16258039
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrophoresis of diffuse soft particles.
    Duval JF; Ohshima H
    Langmuir; 2006 Apr; 22(8):3533-46. PubMed ID: 16584225
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrostatic interactions of colloidal particles in nonpolar solvents: role of surface chemistry and charge control agents.
    Sainis SK; Germain V; Mejean CO; Dufresne ER
    Langmuir; 2008 Feb; 24(4):1160-4. PubMed ID: 18062711
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optically induced melting of colloidal crystals and their recrystallization.
    Harada M; Ishii M; Nakamura H
    Colloids Surf B Biointerfaces; 2007 Apr; 56(1-2):220-3. PubMed ID: 17049820
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The influence of potential softness on the transport coefficients of simple fluids.
    Heyes DM; Brańka AC
    J Chem Phys; 2005 Jun; 122(23):234504. PubMed ID: 16008459
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of hydrodynamic interaction on partially stretched polymers.
    Sain A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):061919. PubMed ID: 18643312
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Unification of dynamic density functional theory for colloidal fluids to include inertia and hydrodynamic interactions: derivation and numerical experiments.
    Goddard BD; Nold A; Savva N; Yatsyshin P; Kalliadasis S
    J Phys Condens Matter; 2013 Jan; 25(3):035101. PubMed ID: 23220969
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.