BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 20866277)

  • 1. Contribution of double scattering to structural coloration in quasiordered nanostructures of bird feathers.
    Noh H; Liew SF; Saranathan V; Prum RO; Mochrie SG; Dufresne ER; Cao H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051923. PubMed ID: 20866277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double scattering of light from Biophotonic Nanostructures with short-range order.
    Noh H; Liew SF; Saranathan V; Prum RO; Mochrie SG; Dufresne ER; Cao H
    Opt Express; 2010 May; 18(11):11942-8. PubMed ID: 20589056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How noniridescent colors are generated by quasi-ordered structures of bird feathers.
    Noh H; Liew SF; Saranathan V; Mochrie SG; Prum RO; Dufresne ER; Cao H
    Adv Mater; 2010 Jul; 22(26-27):2871-80. PubMed ID: 20401903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and optical function of amorphous photonic nanostructures from avian feather barbs: a comparative small angle X-ray scattering (SAXS) analysis of 230 bird species.
    Saranathan V; Forster JD; Noh H; Liew SF; Mochrie SG; Cao H; Dufresne ER; Prum RO
    J R Soc Interface; 2012 Oct; 9(75):2563-80. PubMed ID: 22572026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kingfisher feathers--colouration by pigments, spongy nanostructures and thin films.
    Stavenga DG; Tinbergen J; Leertouwer HL; Wilts BD
    J Exp Biol; 2011 Dec; 214(Pt 23):3960-7. PubMed ID: 22071186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remote nocturnal bird classification by spectroscopy in extended wavelength ranges.
    Lundin P; Samuelsson P; Svanberg S; Runemark A; Åkesson S; Brydegaard M
    Appl Opt; 2011 Jul; 50(20):3396-411. PubMed ID: 21743546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of single gyroid photonic crystals in bird feathers.
    Saranathan V; Narayanan S; Sandy A; Dufresne ER; Prum RO
    Proc Natl Acad Sci U S A; 2021 Jun; 118(23):. PubMed ID: 34074782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relative contributions of pigments and biophotonic nanostructures to natural color production: a case study in budgerigar (Melopsittacus undulatus) feathers.
    D'Alba L; Kieffer L; Shawkey MD
    J Exp Biol; 2012 Apr; 215(Pt 8):1272-7. PubMed ID: 22442364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultranegative angular dispersion of diffraction in quasiordered biophotonic structures.
    Liu F; Dong B; Zhao F; Hu X; Liu X; Zi J
    Opt Express; 2011 Apr; 19(8):7750-5. PubMed ID: 21503085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colour-producing β-keratin nanofibres in blue penguin (Eudyptula minor) feathers.
    D'Alba L; Saranathan V; Clarke JA; Vinther JA; Prum RO; Shawkey MD
    Biol Lett; 2011 Aug; 7(4):543-6. PubMed ID: 21307042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Significance of a basal melanin layer to production of non-iridescent structural plumage color: evidence from an amelanotic Steller's jay (Cyanocitta stelleri).
    Shawkey MD; Hill GE
    J Exp Biol; 2006 Apr; 209(Pt 7):1245-50. PubMed ID: 16547296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of colour-producing beta-keratin nanostructures in avian feather barbs.
    Prum RO; Dufresne ER; Quinn T; Waters K
    J R Soc Interface; 2009 Apr; 6 Suppl 2(Suppl 2):S253-65. PubMed ID: 19336345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectral reflectance and directional properties of structural coloration in bird plumage.
    Osorio D; Ham AD
    J Exp Biol; 2002 Jul; 205(Pt 14):2017-27. PubMed ID: 12089207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential effects of early growth conditions on colour-producing nanostructures revealed through small angle X-ray scattering and electron microscopy.
    Janas K; Łatkiewicz A; Parnell A; Lutyk D; Barczyk J; Shawkey MD; Gustafsson L; Cichoń M; Drobniak SM
    J Exp Biol; 2020 Sep; 223(Pt 18):. PubMed ID: 32764026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical approaches to study the optical response of the red-legged honeycreeper's plumage (Cyanerpes cyaneus).
    Urquia GM; Inchaussandague ME; Skigin DC; Lester M; Barreira A; Tubaro P
    Appl Opt; 2020 May; 59(13):3901-3909. PubMed ID: 32400659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fourier tool for the analysis of coherent light scattering by bio-optical nanostructures.
    Prum RO; Torres RH
    Integr Comp Biol; 2003 Aug; 43(4):591-602. PubMed ID: 21680467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plumage colour and feather pecking in laying hens, a chicken perspective?
    Bright A
    Br Poult Sci; 2007 Jun; 48(3):253-63. PubMed ID: 17578687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proximate bases of silver color in anhinga (Anhinga anhinga) feathers.
    Shawkey MD; Maia R; D'Alba L
    J Morphol; 2011 Nov; 272(11):1399-407. PubMed ID: 21755527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field-based angle-resolved light-scattering study of single live cells.
    Choi W; Yu CC; Fang-Yen C; Badizadegan K; Dasari RR; Feld MS
    Opt Lett; 2008 Jul; 33(14):1596-8. PubMed ID: 18628809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size-dependent optical behavior of disordered nanostructures on glass substrates.
    Park GC; Song YM; Kang EK; Lee YT
    Appl Opt; 2012 Aug; 51(24):5890-6. PubMed ID: 22907018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.