These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 20866305)

  • 1. Exponential energy growth in a Fermi accelerator.
    Shah K; Turaev D; Rom-Kedar V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056205. PubMed ID: 20866305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy growth rate in smoothly oscillating billiards.
    Shah K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046215. PubMed ID: 21599278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fermi acceleration and adiabatic invariants for non-autonomous billiards.
    Gelfreich V; Rom-Kedar V; Turaev D
    Chaos; 2012 Sep; 22(3):033116. PubMed ID: 23020455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-amplitude oscillations in the rectangular Fermi accelerator.
    Shah K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):024902. PubMed ID: 24032973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exponential Fermi acceleration in general time-dependent billiards.
    Batistić B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032909. PubMed ID: 25314506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origin of chaos in soft interactions and signatures of nonergodicity.
    Beims MW; Manchein C; Rost JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056203. PubMed ID: 18233735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lyapunov spectra of billiards with cylindrical scatterers: comparison with many-particle systems.
    de Wijn AS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026216. PubMed ID: 16196693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust exponential acceleration in time-dependent billiards.
    Gelfreich V; Rom-Kedar V; Shah K; Turaev D
    Phys Rev Lett; 2011 Feb; 106(7):074101. PubMed ID: 21405517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppressing Fermi acceleration in two-dimensional driven billiards.
    Leonel ED; Bunimovich LA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016202. PubMed ID: 20866702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaky Fermi accelerators.
    Shah K; Gelfreich V; Rom-Kedar V; Turaev D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062920. PubMed ID: 26172785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geometrical constraints on finite-time Lyapunov exponents in two and three dimensions.
    Thiffeault JL; Boozer AH
    Chaos; 2001 Mar; 11(1):16-28. PubMed ID: 12779437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Competition between suppression and production of Fermi acceleration.
    Ladeira DG; Leonel ED
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 2):036216. PubMed ID: 20365841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fermi acceleration in chaotic shape-preserving billiards.
    Batistić B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022912. PubMed ID: 25353550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaling investigation for the dynamics of charged particles in an electric field accelerator.
    Gouve A Ladeira D; Leonel ED
    Chaos; 2012 Dec; 22(4):043148. PubMed ID: 23278083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable fermi acceleration in the driven elliptical billiard.
    Lenz F; Diakonos FK; Schmelcher P
    Phys Rev Lett; 2008 Jan; 100(1):014103. PubMed ID: 18232773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamical thermalization in time-dependent billiards.
    Hansen M; Ciro D; Caldas IL; Leonel ED
    Chaos; 2019 Oct; 29(10):103122. PubMed ID: 31675813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperacceleration in a stochastic Fermi-Ulam model.
    Karlis AK; Papachristou PK; Diakonos FK; Constantoudis V; Schmelcher P
    Phys Rev Lett; 2006 Nov; 97(19):194102. PubMed ID: 17155634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalized Lyapunov exponent as a unified characterization of dynamical instabilities.
    Akimoto T; Nakagawa M; Shinkai S; Aizawa Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012926. PubMed ID: 25679700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling of bouncing-ball modes to the chaotic sea and their counting function.
    Löck S; Bäcker A; Ketzmerick R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016210. PubMed ID: 22400646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-dependent mode structure for Lyapunov vectors as a collective movement in quasi-one-dimensional systems.
    Taniguchi T; Morriss GP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016218. PubMed ID: 15697709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.