These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 20866311)

  • 41. Robustness of a partially interdependent network formed of clustered networks.
    Shao S; Huang X; Stanley HE; Havlin S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032812. PubMed ID: 24730904
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transient chaos and associated system-intrinsic switching of spacetime patterns in two synaptically coupled layers of Morris-Lecar neurons.
    Hartle H; Wackerbauer R
    Phys Rev E; 2017 Sep; 96(3-1):032223. PubMed ID: 29347029
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Flow-induced transitions in bistable systems.
    Berenstein I; Beta C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056205. PubMed ID: 23214855
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transition to period-3 synchronized state in coupled gauss maps.
    Gaiki PM; Deshmukh AD; Pakhare SS; Gade PM
    Chaos; 2024 Feb; 34(2):. PubMed ID: 38363958
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Delay-enhanced coherent chaotic oscillations in networks with large disorders.
    Senthilkumar DV; Suresh R; Sheeba JH; Lakshmanan M; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066206. PubMed ID: 22304177
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Experimentally observed route to spatiotemporal chaos in an extended one-dimensional array of convective oscillators.
    Miranda MA; Burguete J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046201. PubMed ID: 19518306
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Percolation on interacting networks with feedback-dependency links.
    Dong G; Du R; Tian L; Liu R
    Chaos; 2015 Jan; 25(1):013101. PubMed ID: 25637912
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nonlocal coupling can prevent the collapse of spatiotemporal chaos.
    Yonker S; Wackerbauer R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026218. PubMed ID: 16605440
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Desynchronization waves in small-world networks.
    Park K; Huang L; Lai YC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 2):026211. PubMed ID: 17358409
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fisher information at the edge of chaos in random Boolean networks.
    Wang XR; Lizier JT; Prokopenko M
    Artif Life; 2011; 17(4):315-29. PubMed ID: 21762019
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phase diagram for a two-dimensional, two-temperature, diffusive XY model.
    Reichl MD; Del Genio CI; Bassler KE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):040102. PubMed ID: 21230222
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Extensive chaos in the Lorenz-96 model.
    Karimi A; Paul MR
    Chaos; 2010 Dec; 20(4):043105. PubMed ID: 21198075
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of a polymer growth process with an equilibrium multicritical collapse phase transition: the meeting point of swollen, collapsed, and crystalline polymers.
    Doukas J; Owczarek AL; Prellberg T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):031103. PubMed ID: 21230021
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transition-type change between an inverted Berezinskii-Kosterlitz-Thouless transition and an abrupt transition in bond percolation on a random hierarchical small-world network.
    Nogawa T; Hasegawa T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042803. PubMed ID: 24827289
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Edge of chaos and genesis of turbulence.
    Chian AC; Muñoz PR; Rempel EL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052910. PubMed ID: 24329334
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synchronized clusters in coupled map networks. I. Numerical studies.
    Jalan S; Amritkar RE; Hu CK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016211. PubMed ID: 16090070
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phase transitions in semisupervised clustering of sparse networks.
    Zhang P; Moore C; Zdeborová L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052802. PubMed ID: 25493829
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Spatiotemporal chaos arising from standing waves in a reaction-diffusion system with cross-diffusion.
    Berenstein I; Beta C
    J Chem Phys; 2012 Jan; 136(3):034903. PubMed ID: 22280779
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Property change of unstable fixed point and phase synchronization in controlling spatiotemporal chaos by a periodic signal.
    Sang H; He K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):036202. PubMed ID: 17930318
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phase synchronization of three locally coupled chaotic electrochemical oscillators: enhanced phase diffusion and identification of indirect coupling.
    Wickramasinghe M; Kiss IZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 2):016210. PubMed ID: 21405763
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.