These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 20866311)

  • 61. Pinning control of threshold coupled chaotic neuronal maps.
    Shrimali MD
    Chaos; 2009 Sep; 19(3):033105. PubMed ID: 19791985
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Evidence for directed percolation universality at the onset of spatiotemporal intermittency in coupled circle maps.
    Janaki TM; Sinha S; Gupte N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056218. PubMed ID: 12786261
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Nonuniversal dependence of spatiotemporal regularity on randomness in coupling connections.
    Jabeen Z; Sinha S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 2):066120. PubMed ID: 19256918
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Synchronization and spatiotemporal patterns in coupled phase oscillators on a weighted planar network.
    Kagawa Y; Takamatsu A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046216. PubMed ID: 19518321
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Wave fronts and spatiotemporal chaos in an array of coupled Lorenz oscillators.
    Pazó D; Montejo N; Pérez-Muñuzuri V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066206. PubMed ID: 11415205
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Percolation of a general network of networks.
    Gao J; Buldyrev SV; Stanley HE; Xu X; Havlin S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062816. PubMed ID: 24483520
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Noise can delay and advance the collapse of spatiotemporal chaos.
    Wackerbauer R; Kobayashi S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 2):066209. PubMed ID: 17677342
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Nonequilibrium transitions in complex networks: a model of social interaction.
    Klemm K; Eguíluz VM; Toral R; San Miguel M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026120. PubMed ID: 12636761
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Transitions from spatiotemporal chaos to cluster and complete synchronization states in a shift-invariant set of coupled nonlinear oscillators.
    Chembo Kouomou Y; Woafo P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046205. PubMed ID: 12786458
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Small-world to fractal transition in complex networks: a renormalization group approach.
    Rozenfeld HD; Song C; Makse HA
    Phys Rev Lett; 2010 Jan; 104(2):025701. PubMed ID: 20366610
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Transition to burst synchronization in coupled neuron networks.
    Shen Y; Hou Z; Xin H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031920. PubMed ID: 18517435
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Synchronization transition of identical phase oscillators in a directed small-world network.
    Tönjes R; Masuda N; Kori H
    Chaos; 2010 Sep; 20(3):033108. PubMed ID: 20887048
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Controlling spatiotemporal chaos in chains of dissipative Kapitza pendula.
    Chacón R; Marcheggiani L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016201. PubMed ID: 20866701
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Spatiotemporal chaos from bursting dynamics.
    Berenstein I; De Decker Y
    J Chem Phys; 2015 Aug; 143(6):064105. PubMed ID: 26277125
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Percolation in interdependent and interconnected networks: abrupt change from second- to first-order transitions.
    Hu Y; Ksherim B; Cohen R; Havlin S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066116. PubMed ID: 22304164
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Dynamic characterizers of spatiotemporal intermittency.
    Jabeen Z; Gupte N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016202. PubMed ID: 16090061
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Harmonic modulation instability and spatiotemporal chaos.
    He XT; Zheng CY; Zhu SP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2B):037201. PubMed ID: 12366301
    [TBL] [Abstract][Full Text] [Related]  

  • 78. On the origin of chaos in autonomous Boolean networks.
    Cavalcante HL; Gauthier DJ; Socolar JE; Zhang R
    Philos Trans A Math Phys Eng Sci; 2010 Jan; 368(1911):495-513. PubMed ID: 20008414
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Generalized synchronization of chaos in autonomous systems.
    Alvarez-Llamoza O; Cosenza MG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046216. PubMed ID: 18999517
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Criticality governed by the stable renormalization fixed point of the Ising model in the hierarchical small-world network.
    Nogawa T; Hasegawa T; Nemoto K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 1):030102. PubMed ID: 23030852
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.