These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 20866383)

  • 1. Realization of a Brownian engine to study transport phenomena: a semiclassical approach.
    Ghosh P; Shit A; Chattopadhyay S; Chaudhuri JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061112. PubMed ID: 20866383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a semiclassical method to compute mobility and diffusion coefficient of a Brownian particle in a nonequilibrium environment.
    Shit A; Ghosh P; Chattopadhyay S; Chaudhuri JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031125. PubMed ID: 21517472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-particle stochastic heat engine.
    Rana S; Pal PS; Saha A; Jayannavar AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042146. PubMed ID: 25375477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple model for transport phenomena: microscopic construction of Maxwell demonlike engine.
    Chaudhuri JR; Chattopadhyay S; Banik SK
    J Chem Phys; 2007 Dec; 127(22):224508. PubMed ID: 18081407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Approach to equilibrium and nonequilibrium stationary distributions of interacting many-particle systems that are coupled to different heat baths.
    Netz RR
    Phys Rev E; 2020 Feb; 101(2-1):022120. PubMed ID: 32168558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directed motion in a periodic potential of a quantum system coupled to a heat bath driven by a colored noise.
    Bhattacharya S; Chaudhury P; Chattopadhyay S; Chaudhuri JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021123. PubMed ID: 18850802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energetics of a simple microscopic heat engine.
    Asfaw M; Bekele M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056109. PubMed ID: 16383690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase induced current in presence of nonequilibrium bath: A quantum approach.
    Bhattacharya S; Chaudhury P; Chattopadhyay S; Chaudhuri JR
    J Chem Phys; 2008 Sep; 129(12):124708. PubMed ID: 19045049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic feature of a Brownian heat engine operating between two heat baths.
    Asfaw M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012143. PubMed ID: 24580208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum transport in a periodic symmetric potential of a driven quantum system.
    Bhattacharya S; Chaudhury P; Chattopadhyay S; Chaudhuri JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041127. PubMed ID: 19905293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental realization of a minimal microscopic heat engine.
    Argun A; Soni J; Dabelow L; Bo S; Pesce G; Eichhorn R; Volpe G
    Phys Rev E; 2017 Nov; 96(5-1):052106. PubMed ID: 29347639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines.
    Kato A; Tanimura Y
    J Chem Phys; 2016 Dec; 145(22):224105. PubMed ID: 27984915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal potentials for temperature ratchets.
    Berger F; Schmiedl T; Seifert U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031118. PubMed ID: 19391913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Underdamped active Brownian heat engine.
    Holubec V; Marathe R
    Phys Rev E; 2020 Dec; 102(6-1):060101. PubMed ID: 33466083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adiabatic processes realized with a trapped Brownian particle.
    Martínez IA; Roldán É; Dinis L; Petrov D; Rica RA
    Phys Rev Lett; 2015 Mar; 114(12):120601. PubMed ID: 25860731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat-machine control by quantum-state preparation: from quantum engines to refrigerators.
    Gelbwaser-Klimovsky D; Kurizki G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022102. PubMed ID: 25215684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exact time-average distribution for a stationary non-Markovian massive Brownian particle coupled to two heat baths.
    Soares-Pinto DO; Morgado WA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 1):011103. PubMed ID: 18351814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficiency at maximum power and efficiency fluctuations in a linear Brownian heat-engine model.
    Park JM; Chun HM; Noh JD
    Phys Rev E; 2016 Jul; 94(1-1):012127. PubMed ID: 27575096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum dynamical framework for Brownian heat engines.
    Agarwal GS; Chaturvedi S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012130. PubMed ID: 23944437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible quantum brownian heat engines for electrons.
    Humphrey TE; Newbury R; Taylor RP; Linke H
    Phys Rev Lett; 2002 Sep; 89(11):116801. PubMed ID: 12225160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.