These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 20866514)

  • 1. Differential embedding of the Lorenz attractor.
    Cross DJ; Gilmore R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066220. PubMed ID: 20866514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Symmetric projection attractor reconstruction: Embedding in higher dimensions.
    Lyle JV; Aston PJ
    Chaos; 2021 Nov; 31(11):113135. PubMed ID: 34881593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conjoined Lorenz twins-a new pseudohyperbolic attractor in three-dimensional maps and flows.
    Gonchenko S; Karatetskaia E; Kazakov A; Kruglov V
    Chaos; 2022 Dec; 32(12):121107. PubMed ID: 36587318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Embeddings of low-dimensional strange attractors: topological invariants and degrees of freedom.
    Romanazzi N; Lefranc M; Gilmore R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 2):066214. PubMed ID: 17677347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relation between observability and differential embeddings for nonlinear dynamics.
    Letellier C; Aguirre LA; Maquet J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 2):066213. PubMed ID: 16089855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Embeddings of a strange attractor into R3.
    Tsankov TD; Nishtala A; Gilmore R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056215. PubMed ID: 15244912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spherical and Hyperbolic Embeddings of Data.
    Wilson RC; Hancock ER; Pekalska E; Duin RP
    IEEE Trans Pattern Anal Mach Intell; 2014 Nov; 36(11):2255-69. PubMed ID: 26353065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Architecture of chaotic attractors for flows in the absence of any singular point.
    Letellier C; Malasoma JM
    Chaos; 2016 Jun; 26(6):063115. PubMed ID: 27368780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catastrophic bifurcation from riddled to fractal basins.
    Lai YC; Andrade V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056228. PubMed ID: 11736075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bubbling and on-off intermittency in bailout embeddings.
    Cartwright JH; Magnasco MO; Piro O; Tuval I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016217. PubMed ID: 12935235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilizing embedology: Geometry-preserving delay-coordinate maps.
    Eftekhari A; Yap HL; Wakin MB; Rozell CJ
    Phys Rev E; 2018 Feb; 97(2-1):022222. PubMed ID: 29548121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Representation theory for strange attractors.
    Cross DJ; Gilmore R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056207. PubMed ID: 20365060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional global manifolds of vector fields.
    Krauskopf B; Osinga H
    Chaos; 1999 Sep; 9(3):768-774. PubMed ID: 12779872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of tests for embeddings.
    Letellier C; Moroz IM; Gilmore R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026203. PubMed ID: 18850917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Entropy charts and bifurcations for Lorenz maps with infinite derivatives.
    Malkin M; Safonov K
    Chaos; 2021 Apr; 31(4):043107. PubMed ID: 34251229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Symmetry breaking, mixing, instability, and low-frequency variability in a minimal Lorenz-like system.
    Lucarini V; Fraedrich K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026313. PubMed ID: 19792255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of dynamical invariants without embedding by recurrence plots.
    Thiel M; Romano MC; Read PL; Kurths J
    Chaos; 2004 Jun; 14(2):234-43. PubMed ID: 15189051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manifold learning on brain functional networks in aging.
    Qiu A; Lee A; Tan M; Chung MK
    Med Image Anal; 2015 Feb; 20(1):52-60. PubMed ID: 25476411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Whitney reduction network: a method for computing autoassociative graphs.
    Broomhead DS; Kirby MJ
    Neural Comput; 2001 Nov; 13(11):2595-616. PubMed ID: 11674853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid manifold embedding.
    Liu Y; Liu Y; Chan KC; Hua KA
    IEEE Trans Neural Netw Learn Syst; 2014 Dec; 25(12):2295-302. PubMed ID: 25420250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.