These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 20866515)

  • 1. Chimeras in networks of planar oscillators.
    Laing CR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066221. PubMed ID: 20866515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvable model for chimera states of coupled oscillators.
    Abrams DM; Mirollo R; Strogatz SH; Wiley DA
    Phys Rev Lett; 2008 Aug; 101(8):084103. PubMed ID: 18764617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bistable chimera attractors on a triangular network of oscillator populations.
    Martens EA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016216. PubMed ID: 20866716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multistable chimera states in a smallest population of three coupled oscillators.
    Ragavan A; Manoranjani M; Senthilkumar DV; Chandrasekar VK
    Phys Rev E; 2023 Apr; 107(4-1):044209. PubMed ID: 37198793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chimera states in networks of phase oscillators: The case of two small populations.
    Panaggio MJ; Abrams DM; Ashwin P; Laing CR
    Phys Rev E; 2016 Jan; 93(1):012218. PubMed ID: 26871084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of higher-order interactions on chimera states in two populations of Kuramoto oscillators.
    Kar R; Yadav A; Chandrasekar VK; Senthilkumar DV
    Chaos; 2024 Feb; 34(2):. PubMed ID: 38363957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chimera states in two populations with heterogeneous phase-lag.
    Martens EA; Bick C; Panaggio MJ
    Chaos; 2016 Sep; 26(9):094819. PubMed ID: 27781471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chimera states in two-dimensional networks of locally coupled oscillators.
    Kundu S; Majhi S; Bera BK; Ghosh D; Lakshmanan M
    Phys Rev E; 2018 Feb; 97(2-1):022201. PubMed ID: 29548198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Networks of coupled oscillators: From phase to amplitude chimeras.
    Banerjee T; Biswas D; Ghosh D; Schöll E; Zakharova A
    Chaos; 2018 Nov; 28(11):113124. PubMed ID: 30501215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stable amplitude chimera states in a network of locally coupled Stuart-Landau oscillators.
    Premalatha K; Chandrasekar VK; Senthilvelan M; Lakshmanan M
    Chaos; 2018 Mar; 28(3):033110. PubMed ID: 29604660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chimera states in heterogeneous networks.
    Laing CR
    Chaos; 2009 Mar; 19(1):013113. PubMed ID: 19334977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chimeras in networks with purely local coupling.
    Laing CR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):050904. PubMed ID: 26651635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attracting Poisson chimeras in two-population networks.
    Lee S; Krischer K
    Chaos; 2021 Nov; 31(11):113101. PubMed ID: 34881613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chimeras and clusters in networks of hyperbolic chaotic oscillators.
    Cano AV; Cosenza MG
    Phys Rev E; 2017 Mar; 95(3-1):030202. PubMed ID: 28415379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chimeras with uniformly distributed heterogeneity: Two coupled populations.
    Laing CR
    Phys Rev E; 2022 Feb; 105(2-1):024306. PubMed ID: 35291147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chimera States in populations of nonlocally coupled chemical oscillators.
    Nkomo S; Tinsley MR; Showalter K
    Phys Rev Lett; 2013 Jun; 110(24):244102. PubMed ID: 25165927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Smallest chimera states.
    Maistrenko Y; Brezetsky S; Jaros P; Levchenko R; Kapitaniak T
    Phys Rev E; 2017 Jan; 95(1-1):010203. PubMed ID: 28208439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collective dynamics of coupled Lorenz oscillators near the Hopf boundary: Intermittency and chimera states.
    Khatun AA; Muthanna YA; Punetha N; Jafri HH
    Phys Rev E; 2024 Mar; 109(3-1):034208. PubMed ID: 38632727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amplitude death through a Hopf bifurcation in coupled electrochemical oscillators: experiments and simulations.
    Zhai Y; Kiss IZ; Hudson JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026208. PubMed ID: 14995549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Weak chimeras in minimal networks of coupled phase oscillators.
    Ashwin P; Burylko O
    Chaos; 2015 Jan; 25(1):013106. PubMed ID: 25637917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.