These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 20866586)

  • 1. Limitations of a Fokker-Planck description of nucleation.
    Kuipers J; Barkema GT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011128. PubMed ID: 20866586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-Markovian dynamics of clusters during nucleation.
    Kuipers J; Barkema GT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):062101. PubMed ID: 19658543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical tests of nucleation theories for the Ising models.
    Ryu S; Cai W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011603. PubMed ID: 20866625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applicability of the Fokker-Planck equation to the description of diffusion effects on nucleation.
    Sorokin MV; Dubinko VI; Borodin VA
    Phys Rev E; 2017 Jan; 95(1-1):012801. PubMed ID: 28208399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hamiltonian chaos acts like a finite energy reservoir: accuracy of the Fokker-Planck approximation.
    Riegert A; Baba N; Gelfert K; Just W; Kantz H
    Phys Rev Lett; 2005 Feb; 94(5):054103. PubMed ID: 15783645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fokker-Planck description for the queue dynamics of large tick stocks.
    Garèche A; Disdier G; Kockelkoren J; Bouchaud JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032809. PubMed ID: 24125314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colored-noise Fokker-Planck equation for the shear-induced self-diffusion process of non-Brownian particles.
    Lukassen LJ; Oberlack M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052145. PubMed ID: 25353777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generalized quantum Fokker-Planck, diffusion, and Smoluchowski equations with true probability distribution functions.
    Banik SK; Bag BC; Ray DS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051106. PubMed ID: 12059528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Empirical Fokker-Planck-based test of stationarity for time series.
    Erkal C; Cecen AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062907. PubMed ID: 25019851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleation times in the two-dimensional Ising model.
    Brendel K; Barkema GT; van Beijeren H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 1):031601. PubMed ID: 15903437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of hidden regimes in stochastic cyclostationary time series.
    Wirth V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 2):016136. PubMed ID: 11461360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solutions of a class of non-Markovian Fokker-Planck equations.
    Sokolov IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 1):041101. PubMed ID: 12443171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generalized thermodynamics and Fokker-Planck equations: applications to stellar dynamics and two-dimensional turbulence.
    Chavanis PH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036108. PubMed ID: 14524833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent developments in the kinetic theory of nucleation.
    Ruckenstein E; Djikaev YS
    Adv Colloid Interface Sci; 2005 Dec; 118(1-3):51-72. PubMed ID: 16137628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous-time multidimensional Markovian description of Lévy walks.
    Lubashevsky I; Friedrich R; Heuer A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031148. PubMed ID: 19905103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fokker-Planck formalism in magnetic resonance simulations.
    Kuprov I
    J Magn Reson; 2016 Sep; 270():124-135. PubMed ID: 27470597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient approach to nucleation and growth dynamics: stationary diffusion flux model.
    van Putten DS; Kalikmanov VI
    J Chem Phys; 2009 Apr; 130(16):164508. PubMed ID: 19405595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limiting shapes of Ising droplets, Ising fingers, and Ising solitons.
    Krapivsky PL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011152. PubMed ID: 22400557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fokker-Planck analysis of stochastic coherence in models of an excitable neuron with noise in both fast and slow dynamics.
    Hilborn RC; Erwin RJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031112. PubMed ID: 16241416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multifractal analysis of light scattering-intensity fluctuations.
    Shayeganfar F; Jabbari-Farouji S; Movahed MS; Jafari GR; Tabar MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061126. PubMed ID: 20365137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.