These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

480 related articles for article (PubMed ID: 20866622)

  • 1. Structural relaxation of polydisperse hard spheres: comparison of the mode-coupling theory to a Langevin dynamics simulation.
    Weysser F; Puertas AM; Fuchs M; Voigtmann T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011504. PubMed ID: 20866622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tagged-particle dynamics in a hard-sphere system: mode-coupling theory analysis.
    Voigtmann T; Puertas AM; Fuchs M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061506. PubMed ID: 15697373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short- and long-time diffusion and dynamic scaling in suspensions of charged colloidal particles.
    Banchio AJ; Heinen M; Holmqvist P; Nägele G
    J Chem Phys; 2018 Apr; 148(13):134902. PubMed ID: 29626910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tests of mode-coupling theory in two dimensions.
    Weysser F; Hajnal D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041503. PubMed ID: 21599165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport coefficients in dense active Brownian particle systems: mode-coupling theory and simulation results.
    Reichert J; Granz LF; Voigtmann T
    Eur Phys J E Soft Matter; 2021 Mar; 44(3):27. PubMed ID: 33704593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic glass transition in two dimensions.
    Bayer M; Brader JM; Ebert F; Fuchs M; Lange E; Maret G; Schilling R; Sperl M; Wittmer JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011508. PubMed ID: 17677451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tagged-particle dynamics in a fluid adsorbed in a disordered porous solid: interplay between the diffusion-localization and liquid-glass transitions.
    Krakoviack V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):061501. PubMed ID: 19658507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. "Dense diffusion" in colloidal glasses: short-ranged long-time self-diffusion as a mechanistic model for relaxation dynamics.
    Wang JG; Li Q; Peng X; McKenna GB; Zia RN
    Soft Matter; 2020 Aug; 16(31):7370-7389. PubMed ID: 32696798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mode-coupling theory for tagged-particle motion of active Brownian particles.
    Reichert J; Mandal S; Voigtmann T
    Phys Rev E; 2021 Oct; 104(4-1):044608. PubMed ID: 34781467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glassy dynamics of a binary Voronoi fluid: a mode-coupling analysis.
    Ruscher C; Ciarella S; Luo C; Janssen LMC; Farago J; Baschnagel J
    J Phys Condens Matter; 2021 Feb; 33(6):064001. PubMed ID: 33105111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mode-coupling theory for multiple-time correlation functions of tagged particle densities and dynamical filters designed for glassy systems.
    van Zon R; Schofield J
    J Phys Chem B; 2005 Nov; 109(45):21425-36. PubMed ID: 16853780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glass-transition asymptotics in two theories of glassy dynamics: Self-consistent generalized Langevin equation and mode-coupling theory.
    Elizondo-Aguilera LF; Voigtmann T
    Phys Rev E; 2019 Oct; 100(4-1):042601. PubMed ID: 31770981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relaxation in a glassy binary mixture: comparison of the mode-coupling theory to a Brownian dynamics simulation.
    Flenner E; Szamel G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031508. PubMed ID: 16241445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MD simulation of concentrated polymer solutions: structural relaxation near the glass transition.
    Peter S; Meyer H; Baschnagel J
    Eur Phys J E Soft Matter; 2009 Feb; 28(2):147-58. PubMed ID: 18850324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical study of long-time dynamics and ergodic-nonergodic transitions in dense simple fluids.
    McCowan DD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022107. PubMed ID: 26382344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mode coupling theory analysis of electrolyte solutions: Time dependent diffusion, intermediate scattering function, and ion solvation dynamics.
    Roy S; Yashonath S; Bagchi B
    J Chem Phys; 2015 Mar; 142(12):124502. PubMed ID: 25833591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hard discs under steady shear: comparison of Brownian dynamics simulations and mode coupling theory.
    Henrich O; Weysser F; Cates ME; Fuchs M
    Philos Trans A Math Phys Eng Sci; 2009 Dec; 367(1909):5033-50. PubMed ID: 19933126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glass transition in 1,4-polybutadiene: Mode-coupling theory analysis of molecular dynamics simulations using a chemically realistic model.
    Paul W; Bedrov D; Smith GD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021501. PubMed ID: 17025431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From equilibrium to steady-state dynamics after switch-on of shear.
    Krüger M; Weysser F; Voigtmann T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061506. PubMed ID: 20866424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-consistent generalized Langevin-equation theory for liquids of nonspherically interacting particles.
    Elizondo-Aguilera LF; Zubieta Rico PF; Ruiz-Estrada H; Alarcón-Waess O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052301. PubMed ID: 25493790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.