BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 20866627)

  • 1. Numerical study on the difference in mechanism between vapor-solid and vapor-liquid-solid solidification processes.
    Suzuki M; Hidaka Y; Yanagida T; Kanai M; Kawai T; Kai S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011605. PubMed ID: 20866627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Essential role of catalyst in vapor-liquid-solid growth of compounds.
    Suzuki M; Hidaka Y; Yanagida T; Klamchuen A; Kanai M; Kawai T; Kai S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061606. PubMed ID: 21797379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time observation of the solid-liquid-vapor dissolution of individual tin(IV) oxide nanowires.
    Hudak BM; Chang YJ; Yu L; Li G; Edwards DN; Guiton BS
    ACS Nano; 2014 Jun; 8(6):5441-8. PubMed ID: 24818706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oscillatory mass transport in vapor-liquid-solid growth of sapphire nanowires.
    Oh SH; Chisholm MF; Kauffmann Y; Kaplan WD; Luo W; Rühle M; Scheu C
    Science; 2010 Oct; 330(6003):489-93. PubMed ID: 20966248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the vapor-liquid-solid mechanism for nanowire growth and a model for this mechanism.
    Mohammad SN
    Nano Lett; 2008 May; 8(5):1532-8. PubMed ID: 18380484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. For nanowire growth, vapor-solid-solid (vapor-solid) mechanism is actually vapor-quasisolid-solid (vapor-quasiliquid-solid) mechanism.
    Noor Mohammad S
    J Chem Phys; 2009 Dec; 131(22):224702. PubMed ID: 20001071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Encoding abrupt and uniform dopant profiles in vapor-liquid-solid nanowires by suppressing the reservoir effect of the liquid catalyst.
    Christesen JD; Pinion CW; Zhang X; McBride JR; Cahoon JF
    ACS Nano; 2014 Nov; 8(11):11790-8. PubMed ID: 25363730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational Concept for Reducing Growth Temperature in Vapor-Liquid-Solid Process of Metal Oxide Nanowires.
    Zhu Z; Suzuki M; Nagashima K; Yoshida H; Kanai M; Meng G; Anzai H; Zhuge F; He Y; Boudot M; Takeda S; Yanagida T
    Nano Lett; 2016 Dec; 16(12):7495-7502. PubMed ID: 27960479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid-Liquid-Vapor Etching of Semiconductor Nanowires.
    Hui HY; Filler MA
    Nano Lett; 2015 Oct; 15(10):6939-45. PubMed ID: 26383971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vapor liquid solid-hydride vapor phase epitaxy (VLS-HVPE) growth of ultra-long defect-free GaAs nanowires: ab initio simulations supporting center nucleation.
    André Y; Lekhal K; Hoggan P; Avit G; Cadiz F; Rowe A; Paget D; Petit E; Leroux C; Trassoudaine A; Ramdani MR; Monier G; Colas D; Ajib R; Castelluci D; Gil E
    J Chem Phys; 2014 May; 140(19):194706. PubMed ID: 24852556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of transport gradients in a chemical vapor deposition reactor employing vapor-liquid-solid growth of ternary chalcogenide phase-change materials.
    Johnson DC; Morris WD; Prieto AL
    Nanotechnology; 2010 Apr; 21(16):165604. PubMed ID: 20351405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-catalyzed VLS grown InAs nanowires with twinning superlattices.
    Grap T; Rieger T; Blömers Ch; Schäpers T; Grützmacher D; Lepsa MI
    Nanotechnology; 2013 Aug; 24(33):335601. PubMed ID: 23881182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of an intrinsic source of doping inhomogeneity in vapor-liquid-solid-grown nanowires.
    Connell JG; Yoon K; Perea DE; Schwalbach EJ; Voorhees PW; Lauhon LJ
    Nano Lett; 2013 Jan; 13(1):199-206. PubMed ID: 23237496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A time-resolved numerical study of the vapor-liquid-solid growth kinetics describing the initial nucleation phase as well as pulsed deposition processes.
    Eisenhawer B; Sivakov V; Christiansen S; Falk F
    Nano Lett; 2013 Mar; 13(3):873-83. PubMed ID: 23394587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalyzed oxidation for nanowire growth.
    Tai K; Sun K; Huang B; Dillon SJ
    Nanotechnology; 2014 Apr; 25(14):145603. PubMed ID: 24633154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution-liquid-solid growth of semiconductor nanowires.
    Wang F; Dong A; Sun J; Tang R; Yu H; Buhro WE
    Inorg Chem; 2006 Sep; 45(19):7511-21. PubMed ID: 16961336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vertical crystallization of C60 nanowires by solvent vapor annealing process.
    Kim J; Park C; Park JE; Chu K; Choi HC
    ACS Nano; 2013 Oct; 7(10):9122-8. PubMed ID: 24016247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic-Scale Choreography of Vapor-Liquid-Solid Nanowire Growth.
    Ek M; Filler MA
    Acc Chem Res; 2018 Jan; 51(1):118-126. PubMed ID: 29185707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalyst-nanostructure interfacial lattice mismatch in determining the shape of VLS grown nanowires and nanobelts: a case of Sn/ZnO.
    Ding Y; Gao PX; Wang ZL
    J Am Chem Soc; 2004 Feb; 126(7):2066-72. PubMed ID: 14971941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase-equilibrium-dominated vapor-liquid-solid growth mechanism.
    He C; Wang X; Wu Q; Hu Z; Ma Y; Fu J; Chen Y
    J Am Chem Soc; 2010 Apr; 132(13):4843-7. PubMed ID: 20225864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.