These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 20866662)

  • 1. Network motifs come in sets: correlations in the randomization process.
    Ginoza R; Mugler A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011921. PubMed ID: 20866662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs.
    Kashtan N; Itzkovitz S; Milo R; Alon U
    Bioinformatics; 2004 Jul; 20(11):1746-58. PubMed ID: 15001476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient detection of network motifs.
    Wernicke S
    IEEE/ACM Trans Comput Biol Bioinform; 2006; 3(4):347-59. PubMed ID: 17085844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subgraph ensembles and motif discovery using an alternative heuristic for graph isomorphism.
    Baskerville K; Paczuski M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051903. PubMed ID: 17279935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An efficient algorithm for detecting frequent subgraphs in biological networks.
    Koyutürk M; Grama A; Szpankowski W
    Bioinformatics; 2004 Aug; 20 Suppl 1():i200-7. PubMed ID: 15262800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MAVisto: a tool for the exploration of network motifs.
    Schreiber F; Schwöbbermeyer H
    Bioinformatics; 2005 Sep; 21(17):3572-4. PubMed ID: 16020473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current innovations and future challenges of network motif detection.
    Tran NT; Mohan S; Xu Z; Huang CH
    Brief Bioinform; 2015 May; 16(3):497-525. PubMed ID: 24966356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graph animals, subgraph sampling, and motif search in large networks.
    Baskerville K; Grassberger P; Paczuski M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):036107. PubMed ID: 17930306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncovering disassortativity in large scale-free networks.
    Litvak N; van der Hofstad R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022801. PubMed ID: 23496562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topological generalizations of network motifs.
    Kashtan N; Itzkovitz S; Milo R; Alon U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 1):031909. PubMed ID: 15524551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mining bridge and brick motifs from complex biological networks for functionally and statistically significant discovery.
    Cheng CY; Huang CY; Sun CT
    IEEE Trans Syst Man Cybern B Cybern; 2008 Feb; 38(1):17-24. PubMed ID: 18270079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomolecular network motif counting and discovery by color coding.
    Alon N; Dao P; Hajirasouliha I; Hormozdiari F; Sahinalp SC
    Bioinformatics; 2008 Jul; 24(13):i241-9. PubMed ID: 18586721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subgraphs and network motifs in geometric networks.
    Itzkovitz S; Alon U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026117. PubMed ID: 15783388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motif-role-fingerprints: the building-blocks of motifs, clustering-coefficients and transitivities in directed networks.
    McDonnell MD; Yaveroğlu ÖN; Schmerl BA; Iannella N; Ward LM
    PLoS One; 2014; 9(12):e114503. PubMed ID: 25486535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamical systems for discovering protein complexes and functional modules from biological networks.
    Li W; Liu Y; Huang HC; Peng Y; Lin Y; Ng WK; Ong KL
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(2):233-50. PubMed ID: 17473317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An algorithm for network motif discovery in biological networks.
    Qin G; Gao L
    Int J Data Min Bioinform; 2012; 6(1):1-16. PubMed ID: 22479815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An algorithm for modularity analysis of directed and weighted biological networks based on edge-betweenness centrality.
    Yoon J; Blumer A; Lee K
    Bioinformatics; 2006 Dec; 22(24):3106-8. PubMed ID: 17060356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of graph colouring to biological networks.
    Khor S
    IET Syst Biol; 2010 May; 4(3):185-92. PubMed ID: 20499999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motif statistics of artificially evolved and biological networks.
    Danacı B; Anıl MA; Erzan A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062719. PubMed ID: 25019826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Index-based Subgraph Matching Algorithm with General Symmetries (ISMAGS): exploiting symmetry for faster subgraph enumeration.
    Houbraken M; Demeyer S; Michoel T; Audenaert P; Colle D; Pickavet M
    PLoS One; 2014; 9(5):e97896. PubMed ID: 24879305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.