These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 20866677)

  • 1. Optimized synchronization of chaotic and hyperchaotic systems.
    Bryant PH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):015201. PubMed ID: 20866677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Function projective synchronization in chaotic and hyperchaotic systems through open-plus-closed-loop coupling.
    Sudheer KS; Sabir M
    Chaos; 2010 Mar; 20(1):013115. PubMed ID: 20370270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new scheme to generalized (lag, anticipated, and complete) synchronization in chaotic and hyperchaotic systems.
    Yan Z
    Chaos; 2005 Mar; 15(1):13101. PubMed ID: 15836255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tracking control and synchronization of four-dimensional hyperchaotic Rossler system.
    Wang XY; Wu XJ
    Chaos; 2006 Sep; 16(3):033121. PubMed ID: 17014226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex Generalized Synchronization and Parameter Identification of Nonidentical Nonlinear Complex Systems.
    Wang S; Wang X; Han B
    PLoS One; 2016; 11(3):e0152099. PubMed ID: 27014879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical models for chronotherapy: periodic perturbations in hyperchaos.
    Betancourt-Mar JA; Méndez-Guerrero VA; Hernández-Rodríguez C; Nieto-Villar JM
    Math Biosci Eng; 2010 Jul; 7(3):553-60. PubMed ID: 20578785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive complete synchronization of two identical or different chaotic (hyperchaotic) systems with fully unknown parameters.
    Lu J; Cao J
    Chaos; 2005 Dec; 15(4):043901. PubMed ID: 16396593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperchaos synchronization using univariate impulse control.
    Tian K; Bai C; Ren HP; Grebogi C
    Phys Rev E; 2019 Nov; 100(5-1):052215. PubMed ID: 31869954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synchronized states in chaotic systems coupled indirectly through a dynamic environment.
    Resmi V; Ambika G; Amritkar RE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046216. PubMed ID: 20481816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Q-S (lag or anticipated) synchronization backstepping scheme in a class of continuous-time hyperchaotic systems--a symbolic-numeric computation approach.
    Yan Z
    Chaos; 2005 Jun; 15(2):23902. PubMed ID: 16035897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synchronization-based approach for estimating all model parameters of chaotic systems.
    Konnur R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):027204. PubMed ID: 12636863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel of New 7D Hyperchaotic System with Self-Excited Attractors and Its Hybrid Synchronization.
    Al-Obeidi AS; Fawzi Al-Azzawi S; Abdullah Hamad A; Thivagar ML; Meraf Z; Ahmad S
    Comput Intell Neurosci; 2021; 2021():3081345. PubMed ID: 35003239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emergent hybrid synchronization in coupled chaotic systems.
    Padmanaban E; Boccaletti S; Dana SK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022920. PubMed ID: 25768582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Q-S (complete or anticipated) synchronization backstepping scheme in a class of discrete-time chaotic (hyperchaotic) systems: a symbolic-numeric computation approach.
    Yan Z
    Chaos; 2006 Mar; 16(1):013119. PubMed ID: 16599750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying parameter by identical synchronization between different systems.
    Huang D; Guo R
    Chaos; 2004 Mar; 14(1):152-9. PubMed ID: 15003056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamical parameter identification from a scalar time series.
    Yu D; Liu F
    Chaos; 2008 Dec; 18(4):043108. PubMed ID: 19123618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designing coupling for synchronization and amplification of chaos.
    Grosu I; Padmanaban E; Roy PK; Dana SK
    Phys Rev Lett; 2008 Jun; 100(23):234102. PubMed ID: 18643503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying Chaos by Various Computational Methods. Part 1: Simple Systems.
    Awrejcewicz J; Krysko AV; Erofeev NP; Dobriyan V; Barulina MA; Krysko VA
    Entropy (Basel); 2018 Mar; 20(3):. PubMed ID: 33265266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyperchaos & labyrinth chaos: Revisiting Thomas-Rössler systems.
    Basios V; Antonopoulos CG
    J Theor Biol; 2019 Jan; 460():153-159. PubMed ID: 30316821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple adaptive-feedback controller for identical chaos synchronization.
    Huang D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):037203. PubMed ID: 15903640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.