These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 20866702)

  • 1. Suppressing Fermi acceleration in two-dimensional driven billiards.
    Leonel ED; Bunimovich LA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016202. PubMed ID: 20866702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaling investigation of Fermi acceleration on a dissipative bouncer model.
    Livorati AL; Ladeira DG; Leonel ED
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 2):056205. PubMed ID: 19113198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decay of energy and suppression of Fermi acceleration in a dissipative driven stadium-like billiard.
    Livorati AL; Caldas IL; Leonel ED
    Chaos; 2012 Jun; 22(2):026122. PubMed ID: 22757581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-flight dissipation as a mechanism to suppress Fermi acceleration.
    Oliveira DF; Robnik M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 2):026202. PubMed ID: 21405891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fermi acceleration and scaling properties of a time dependent oval billiard.
    Leonel ED; Oliveira DF; Loskutov A
    Chaos; 2009 Sep; 19(3):033142. PubMed ID: 19792022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-flight and collisional dissipation as a mechanism to suppress Fermi acceleration in a breathing Lorentz gas.
    Oliveira DF; Leonel ED
    Chaos; 2012 Jun; 22(2):026123. PubMed ID: 22757582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of dissipation in time-dependent non-integrable focusing billiards.
    Ryabov AB; Loskutov A
    Chaos; 2012 Jun; 22(2):026121. PubMed ID: 22757580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competition between suppression and production of Fermi acceleration.
    Ladeira DG; Leonel ED
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 2):036216. PubMed ID: 20365841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-dimensional Fermi accelerator model with moving wall described by a nonlinear van der Pol oscillator.
    Botari T; Leonel ED
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012904. PubMed ID: 23410401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stickiness in a bouncer model: A slowing mechanism for Fermi acceleration.
    Livorati AL; Kroetz T; Dettmann CP; Caldas IL; Leonel ED
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036203. PubMed ID: 23030993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamical properties of an harmonic oscillator impacting a vibrating wall.
    de Alcantara Bonfim OF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):056212. PubMed ID: 19518541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppressing Fermi acceleration in a driven elliptical billiard.
    Leonel ED; Bunimovich LA
    Phys Rev Lett; 2010 Jun; 104(22):224101. PubMed ID: 20867173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fermi acceleration in the randomized driven Lorentz gas and the Fermi-Ulam model.
    Karlis AK; Papachristou PK; Diakonos FK; Constantoudis V; Schmelcher P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):016214. PubMed ID: 17677550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing a transition from limited to unlimited diffusion in energy for a time-dependent stochastic billiard.
    Silveira FAO; da Fonseca AKP; Schmelcher P; Ladeira DG; Leonel ED
    Phys Rev E; 2023 Nov; 108(5-1):054206. PubMed ID: 38115468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A consistent approach for the treatment of Fermi acceleration in time-dependent billiards.
    Karlis AK; Diakonos FK; Constantoudis V
    Chaos; 2012 Jun; 22(2):026120. PubMed ID: 22757579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fermi acceleration in chaotic shape-preserving billiards.
    Batistić B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022912. PubMed ID: 25353550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exponential Fermi acceleration in general time-dependent billiards.
    Batistić B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032909. PubMed ID: 25314506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wave packet autocorrelation functions for quantum hard-disk and hard-sphere billiards in the high-energy, diffraction regime.
    Goussev A; Dorfman JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 2):016204. PubMed ID: 16907174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of classical particles in oval or elliptic billiards with a dispersing mechanism.
    da Costa DR; Dettmann CP; de Oliveira JA; Leonel ED
    Chaos; 2015 Mar; 25(3):033109. PubMed ID: 25833431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of ballistic annihilation.
    Piasecki J; Trizac E; Droz M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066111. PubMed ID: 12513351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.