These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 20866761)

  • 1. Dynamical effects of integrative time-delay coupling.
    Saxena G; Prasad A; Ramaswamy R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):017201. PubMed ID: 20866761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amplitude death with mean-field diffusion.
    Sharma A; Shrimali MD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):057204. PubMed ID: 23004911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amplitude death in the absence of time delays in identical coupled oscillators.
    Karnatak R; Ramaswamy R; Prasad A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):035201. PubMed ID: 17930293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Occasional coupling enhances amplitude death in delay-coupled oscillators.
    Ghosh A; Mondal S; Sujith RI
    Chaos; 2022 Oct; 32(10):101106. PubMed ID: 36319273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-delay effects on the aging transition in a population of coupled oscillators.
    Thakur B; Sharma D; Sen A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042904. PubMed ID: 25375564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The study of amplitude death in globally delay-coupled nonidentical systems based on order parameter expansion.
    Yao C; Zou W; Zhao Q
    Chaos; 2012 Jun; 22(2):023149. PubMed ID: 22757556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amplitude and phase effects on the synchronization of delay-coupled oscillators.
    D'Huys O; Vicente R; Danckaert J; Fischer I
    Chaos; 2010 Dec; 20(4):043127. PubMed ID: 21198097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amplitude death in coupled chaotic oscillators.
    Prasad A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056204. PubMed ID: 16383724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase-locked regimes in delay-coupled oscillator networks.
    Punetha N; Prasad A; Ramaswamy R
    Chaos; 2014 Dec; 24(4):043111. PubMed ID: 25554031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of symmetry breaking in networks of globally coupled oscillators.
    Premalatha K; Chandrasekar VK; Senthilvelan M; Lakshmanan M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052915. PubMed ID: 26066237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable amplitude chimera states in a network of locally coupled Stuart-Landau oscillators.
    Premalatha K; Chandrasekar VK; Senthilvelan M; Lakshmanan M
    Chaos; 2018 Mar; 28(3):033110. PubMed ID: 29604660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of asymmetry parameter on the dynamical states of nonlocally coupled nonlinear oscillators.
    Gopal R; Chandrasekar VK; Senthilkumar DV; Venkatesan A; Lakshmanan M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062916. PubMed ID: 26172781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A common lag scenario in quenching of oscillation in coupled oscillators.
    Suresh K; Sabarathinam S; Thamilmaran K; Kurths J; Dana SK
    Chaos; 2016 Aug; 26(8):083104. PubMed ID: 27586600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase and amplitude dynamics in large systems of coupled oscillators: growth heterogeneity, nonlinear frequency shifts, and cluster states.
    Lee WS; Ott E; Antonsen TM
    Chaos; 2013 Sep; 23(3):033116. PubMed ID: 24089952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing coherence via tuning coupling range in nonlocally coupled Stuart-Landau oscillators.
    Zhao N; Sun Z; Xu W
    Sci Rep; 2018 Jun; 8(1):8721. PubMed ID: 29880922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amplitude death in networks of delay-coupled delay oscillators.
    Höfener JM; Sethia GC; Gross T
    Philos Trans A Math Phys Eng Sci; 2013 Sep; 371(1999):20120462. PubMed ID: 23960220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictions of ultraharmonic oscillations in coupled arrays of limit cycle oscillators.
    Landsman AS; Schwartz IB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):036204. PubMed ID: 17025726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transition from amplitude to oscillation death in a network of oscillators.
    Nandan M; Hens CR; Pal P; Dana SK
    Chaos; 2014 Dec; 24(4):043103. PubMed ID: 25554023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase-flip transition in relay-coupled nonlinear oscillators.
    Sharma A; Shrimali MD; Prasad A; Ramaswamy R; Feudel U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016226. PubMed ID: 21867292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synchronization of coupled Boolean phase oscillators.
    Rosin DP; Rontani D; Gauthier DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042907. PubMed ID: 24827313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.