These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 20866761)

  • 21. Phase-locked patterns and amplitude death in a ring of delay-coupled limit cycle oscillators.
    Dodla R; Sen A; Johnston GL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056217. PubMed ID: 15244914
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amplitude death in oscillators coupled by a one-way ring time-delay connection.
    Konishi K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066201. PubMed ID: 15697478
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Collective behaviors of mean-field coupled Stuart-Landau limit-cycle oscillators under additional repulsive links.
    Wang J; Zou W
    Chaos; 2021 Jul; 31(7):073107. PubMed ID: 34340324
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancement of dynamical robustness in a mean-field coupled network through self-feedback delay.
    Sharma A; Rakshit B
    Chaos; 2021 Jan; 31(1):013114. PubMed ID: 33754750
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental evidence of time-delay-induced death in coupled limit-cycle oscillators.
    Ramana Reddy DV ; Sen A; Johnston GL
    Phys Rev Lett; 2000 Oct; 85(16):3381-4. PubMed ID: 11030901
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Amplitude and phase dynamics in oscillators with distributed-delay coupling.
    Kyrychko YN; Blyuss KB; Schöll E
    Philos Trans A Math Phys Eng Sci; 2013 Sep; 371(1999):20120466. PubMed ID: 23960224
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Amplitude death in oscillator networks with variable-delay coupling.
    Gjurchinovski A; Zakharova A; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032915. PubMed ID: 24730921
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oscillation death in asymmetrically delay-coupled oscillators.
    Zou W; Tang Y; Li L; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046206. PubMed ID: 22680555
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alternate coupling mechanism for dynamical quorum sensing.
    Singh H; Parmananda P
    J Phys Chem A; 2012 Oct; 116(42):10269-75. PubMed ID: 23020810
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Master stability islands for amplitude death in networks of delay-coupled oscillators.
    Huddy SR; Sun J
    Phys Rev E; 2016 May; 93(5):052209. PubMed ID: 27300882
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aging transition in mixed active and inactive fractional-order oscillators.
    Sun Z; Liu Y; Liu K; Yang X; Xu W
    Chaos; 2019 Oct; 29(10):103150. PubMed ID: 31675845
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chimeralike states in two distinct groups of identical populations of coupled Stuart-Landau oscillators.
    Premalatha K; Chandrasekar VK; Senthilvelan M; Lakshmanan M
    Phys Rev E; 2017 Feb; 95(2-1):022208. PubMed ID: 28297891
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Frequency discontinuity and amplitude death with time-delay asymmetry.
    Punetha N; Karnatak R; Prasad A; Kurths J; Ramaswamy R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046204. PubMed ID: 22680553
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adaptive synchronization in delay-coupled networks of Stuart-Landau oscillators.
    Selivanov AA; Lehnert J; Dahms T; Hövel P; Fradkov AL; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016201. PubMed ID: 22400637
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synchronization in counter-rotating oscillators.
    Bhowmick SK; Ghosh D; Dana SK
    Chaos; 2011 Sep; 21(3):033118. PubMed ID: 21974653
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oscillation death in diffusively coupled oscillators by local repulsive link.
    Hens CR; Olusola OI; Pal P; Dana SK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):034902. PubMed ID: 24125390
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coupling-induced resonance in two mutually and asymmetrically coupled oscillators.
    Carr TW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026207. PubMed ID: 18850921
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of time-delayed feedback on chaotic oscillators.
    Ryu JW; Kye WH; Lee SY; Kim MW; Choi M; Rim S; Park YJ; Kim CM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036220. PubMed ID: 15524625
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chimera states in purely local delay-coupled oscillators.
    Bera BK; Ghosh D
    Phys Rev E; 2016 May; 93(5):052223. PubMed ID: 27300896
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of multiple time-delay on vibrational resonance.
    Jeevarathinam C; Rajasekar S; Sanjuán MA
    Chaos; 2013 Mar; 23(1):013136. PubMed ID: 23556973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.