These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 20866769)

  • 1. Memory-induced anomalous dynamics: Emergence of diffusion, subdiffusion, and superdiffusion from a single random walk model.
    Kumar N; Harbola U; Lindenberg K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021101. PubMed ID: 20866769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Memory-induced anomalous dynamics in a minimal random walk model.
    Harbola U; Kumar N; Lindenberg K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022136. PubMed ID: 25215717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultraslow diffusion in an exactly solvable non-Markovian random walk.
    da Silva MA; Viswanathan GM; Cressoni JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052110. PubMed ID: 25353742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous-time random walk: crossover from anomalous regime to normal regime.
    Fa KS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):012101. PubMed ID: 20866668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymptotic properties of a bold random walk.
    Serva M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022121. PubMed ID: 25215703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alzheimer random walk model: two previously overlooked diffusion regimes.
    Cressoni JC; Viswanathan GM; Ferreira AS; da Silva MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):042101. PubMed ID: 23214629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microscopic theory of anomalous diffusion based on particle interactions.
    Lutsko JF; Boon JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022108. PubMed ID: 24032776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Random walks and anomalous diffusion in two-component random media.
    Arinstein AE; Gitterman M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021104. PubMed ID: 16196543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvable random-walk model with memory and its relations with Markovian models of anomalous diffusion.
    Boyer D; Romo-Cruz JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042136. PubMed ID: 25375467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discriminating between normal and anomalous random walks.
    Dybiec B; Gudowska-Nowak E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061122. PubMed ID: 20365133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Random death process for the regularization of subdiffusive fractional equations.
    Fedotov S; Falconer S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052139. PubMed ID: 23767519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fractional Lévy stable motion can model subdiffusive dynamics.
    Burnecki K; Weron A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021130. PubMed ID: 20866798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fronts in anomalous diffusion-reaction systems.
    Volpert VA; Nec Y; Nepomnyashchy AA
    Philos Trans A Math Phys Eng Sci; 2013 Jan; 371(1982):20120179. PubMed ID: 23185056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Random walk in chemical space of Cantor dust as a paradigm of superdiffusion.
    Balankin AS; Mena B; Martínez-González CL; Matamoros DM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):052101. PubMed ID: 23214828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reaction-subdiffusion and reaction-superdiffusion equations for evanescent particles performing continuous-time random walks.
    Abad E; Yuste SB; Lindenberg K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031115. PubMed ID: 20365705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stochastic processes crossing from ballistic to fractional diffusion with memory: exact results.
    Ilyin V; Procaccia I; Zagorodny A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):030105. PubMed ID: 20365685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Viscoelastic subdiffusion: from anomalous to normal.
    Goychuk I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046125. PubMed ID: 19905408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Configurational subdiffusion of peptides: a network study.
    Neusius T; Daidone I; Sokolov IM; Smith JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 1):021902. PubMed ID: 21405858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple non-chaotic map generating subdiffusive, diffusive, and superdiffusive dynamics.
    Salari L; Rondoni L; Giberti C; Klages R
    Chaos; 2015 Jul; 25(7):073113. PubMed ID: 26232964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport equations for subdiffusion with nonlinear particle interaction.
    Straka P; Fedotov S
    J Theor Biol; 2015 Feb; 366():71-83. PubMed ID: 25463696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.