These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 20866787)

  • 1. Anomalous mixing and reaction induced by superdiffusive nonlocal transport.
    Bolster D; Benson DA; Le Borgne T; Dentz M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021119. PubMed ID: 20866787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mixing-Driven Equilibrium Reactions in Multidimensional Fractional Advection Dispersion Systems.
    Bolster D; Benson DA; Meerschaert M; Baeumer B
    Physica A; 2013 May; 392(10):. PubMed ID: 24223468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can a Time Fractional-Derivative Model Capture Scale-Dependent Dispersion in Saturated Soils?
    Garrard RM; Zhang Y; Wei S; Sun H; Qian J
    Ground Water; 2017 Nov; 55(6):857-870. PubMed ID: 28692785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling solute transport in one-dimensional homogeneous and heterogeneous soil columns with continuous time random walk.
    Xiong Y; Huang G; Huang Q
    J Contam Hydrol; 2006 Aug; 86(3-4):163-75. PubMed ID: 16687188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mixing and reaction kinetics in porous media: an experimental pore scale quantification.
    Anna Pd; Jimenez-Martinez J; Tabuteau H; Turuban R; Le Borgne T; Derrien M; Méheust Y
    Environ Sci Technol; 2014; 48(1):508-16. PubMed ID: 24274690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scalar dissipation rates in non-conservative transport systems.
    Engdahl NB; Ginn TR; Fogg GE
    J Contam Hydrol; 2013 Jun; 149():46-60. PubMed ID: 23584457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence of one-dimensional scale-dependent fractional advection-dispersion.
    Huang G; Huang Q; Zhan H
    J Contam Hydrol; 2006 May; 85(1-2):53-71. PubMed ID: 16494965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Persistence of incomplete mixing: a key to anomalous transport.
    Le Borgne T; Dentz M; Davy P; Bolster D; Carrera J; de Dreuzy JR; Bour O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):015301. PubMed ID: 21867247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term mass transfer and mixing-controlled reactions of a DNAPL plume from persistent residuals.
    Liu Y; Illangasekare TH; Kitanidis PK
    J Contam Hydrol; 2014 Feb; 157():11-24. PubMed ID: 24269948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Langevin model for reactive transport in porous media.
    Tartakovsky AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026302. PubMed ID: 20866900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffusion in disordered media with long-range correlations: anomalous, Fickian, and superdiffusive transport and log-periodic oscillations.
    Saadatfar M; Sahimi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2A):036116. PubMed ID: 11909174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Operator Lévy motion and multiscaling anomalous diffusion.
    Meerschaert MM; Benson DA; Baeumer B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 1):021112. PubMed ID: 11308473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting the evolution of fast chemical reactions in chaotic flows.
    Tsang YK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026305. PubMed ID: 19792247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of adsorption, radioactive decay and fractal structure of matrix on solute transport in fracture.
    Chugunov V; Fomin S
    Philos Trans A Math Phys Eng Sci; 2020 May; 378(2172):20190283. PubMed ID: 32389092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective dispersion in temporally fluctuating flow through a heterogeneous medium.
    Dentz M; Carrera J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036310. PubMed ID: 14524893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A temporally relaxed theory of physically or chemically non-equilibrium solute transport in heterogeneous porous media.
    Lin YF; Huang J; Carr EJ; Hsieh TC; Zhan H; Yu HL
    J Hydrol (Amst); 2023 May; 620():1-9. PubMed ID: 37680556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microscale simulation and numerical upscaling of a reactive flow in a plane channel.
    Porta GM; Thovert JF; Riva M; Guadagnini A; Adler PM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036102. PubMed ID: 23030975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stochastic mixing model with power law decay of variance.
    Fedotov S; Ihme M; Pitsch H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016310. PubMed ID: 15697725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eulerian derivation of the fractional advection-dispersion equation.
    Schumer R; Benson DA; Meerschaert MM; Wheatcraft SW
    J Contam Hydrol; 2001 Mar; 48(1-2):69-88. PubMed ID: 11291482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local and nonlocal anisotropic transport in reversed shear magnetic fields: shearless Cantori and nondiffusive transport.
    Blazevski D; del-Castillo-Negrete D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):063106. PubMed ID: 23848788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.