These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 20866820)

  • 1. Layer-by-layer nucleation mechanism for quantum dot formation in strained heteroepitaxy.
    Xiang R; Lung MT; Lam CH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021601. PubMed ID: 20866820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Island, pit, and groove formation in strained heteroepitaxy.
    Lung MT; Lam CH; Sander LM
    Phys Rev Lett; 2005 Aug; 95(8):086102. PubMed ID: 16196874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competing roughening mechanisms in strained heteroepitaxy: a fast kinetic Monte Carlo study.
    Lam CH; Lee CK; Sander LM
    Phys Rev Lett; 2002 Nov; 89(21):216102. PubMed ID: 12443435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative model of heterogeneous nucleation and growth of SiGe quantum dot molecules.
    Hu H; Gao H; Liu F
    Phys Rev Lett; 2012 Sep; 109(10):106103. PubMed ID: 23005306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic Monte Carlo simulation of faceted islands in heteroepitaxy using a multistate lattice model.
    Lam CH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):021607. PubMed ID: 20365574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleationless three-dimensional island formation in low-misfit heteroepitaxy.
    Sutter P; Lagally MG
    Phys Rev Lett; 2000 May; 84(20):4637-40. PubMed ID: 10990759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interlayer diffusion of Au atoms in a heteroepitaxial system.
    Ogura S; Fukutani K
    J Phys Condens Matter; 2009 Nov; 21(47):474210. PubMed ID: 21832489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum Dot Self-Assembly Driven by a Surfactant-Induced Morphological Instability.
    Lewis RB; Corfdir P; Li H; Herranz J; Pfüller C; Brandt O; Geelhaar L
    Phys Rev Lett; 2017 Aug; 119(8):086101. PubMed ID: 28952750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of tensile strain on Ag(111) epitaxial growth by kinetic Monte Carlo simulations.
    Matsunaka D; Shibutani Y
    J Phys Condens Matter; 2011 Jul; 23(26):265008. PubMed ID: 21673405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initial surface roughening in Ge/Si(001) heteroepitaxy driven by step-vacancy line interaction.
    Sutter P; Schick I; Ernst W; Sutter E
    Phys Rev Lett; 2003 Oct; 91(17):176102. PubMed ID: 14611361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Island nucleation in thin-film epitaxy: A first-principles investigation.
    Fichthorn KA; Scheffler M
    Phys Rev Lett; 2000 Jun; 84(23):5371-4. PubMed ID: 10990946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleation on a stepped surface with an Ehrlich-Schwöbel barrier.
    Chromcova Z; Tringides MC; Chvoj Z
    J Phys Condens Matter; 2013 Jul; 25(26):265003. PubMed ID: 23733080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic Monte Carlo study of submonolayer heteroepitaxial growth comparing Cu/Ni and Pt/Ni on Ni(100).
    Haug K; Lin M; Lonergan NJ
    J Phys Chem B; 2005 Aug; 109(30):14557-66. PubMed ID: 16852835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear dynamics of island coarsening and stabilization during strained film heteroepitaxy.
    Gamage CG; Huang ZF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022408. PubMed ID: 23496527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capture zone area distributions for nucleation and growth of islands during submonolayer deposition.
    Han Y; Li M; Evans JW
    J Chem Phys; 2016 Dec; 145(21):211911. PubMed ID: 28799337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature dependence of microstructure and strain evolution in strained ZnO films on Al(2)O(3)(0001).
    Kim IW; Lee KM
    Nanotechnology; 2008 Sep; 19(35):355709. PubMed ID: 21828863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kink-formation kinetics and submonolayer density of magic two-dimensional islands in molecular beam epitaxy.
    Filimonov S; Hervieu Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051603. PubMed ID: 20364991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CdSe quantum dot formation: alternative paths to relaxation of a strained CdSe layer and influence of the capping conditions.
    Robin IC; Aichele T; Bougerol C; André R; Tatarenko S; Bellet-Amalric E; Van Daele B; Van Tendeloo G
    Nanotechnology; 2007 Jul; 18(26):265701. PubMed ID: 21730405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric shape transitions of epitaxial quantum dots.
    Wei C; Spencer BJ
    Proc Math Phys Eng Sci; 2016 Jun; 472(2190):20160262. PubMed ID: 27436989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling elastic anisotropy in strained heteroepitaxy.
    Dixit GK; Ranganathan M
    J Phys Condens Matter; 2017 Sep; 29(37):375001. PubMed ID: 28574401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.