These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 20866893)

  • 1. Wave propagation in a FitzHugh-Nagumo-type model with modified excitability.
    Zemskov EP; Epstein IR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026207. PubMed ID: 20866893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oscillatory pulse-front waves in a reaction-diffusion system with cross diffusion.
    Zemskov EP; Tsyganov MA; Horsthemke W
    Phys Rev E; 2018 Jun; 97(6-1):062206. PubMed ID: 30011462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wavy fronts in a hyperbolic FitzHugh-Nagumo system and the effects of cross diffusion.
    Zemskov EP; Tsyganov MA; Horsthemke W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062917. PubMed ID: 26172782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifront regime of a piecewise-linear FitzHugh-Nagumo model with cross diffusion.
    Zemskov EP; Tsyganov MA; Horsthemke W
    Phys Rev E; 2019 Jun; 99(6-1):062214. PubMed ID: 31330591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. McKean caricature of the FitzHugh-Nagumo model: traveling pulses in a discrete diffusive medium.
    Tonnelier A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):036105. PubMed ID: 12689130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Segregation and pursuit waves in activator-inhibitor systems.
    Méndez V; Horsthemke W; Zemskov EP; Casas-Vázquez J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046222. PubMed ID: 17995097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oscillatory pulses and wave trains in a bistable reaction-diffusion system with cross diffusion.
    Zemskov EP; Tsyganov MA; Horsthemke W
    Phys Rev E; 2017 Jan; 95(1-1):012203. PubMed ID: 28208357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Speed of traveling fronts in a sigmoidal reaction-diffusion system.
    Zemskov EP; Kassner K; Tsyganov MA; Epstein IR
    Chaos; 2011 Mar; 21(1):013115. PubMed ID: 21456829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibitor-Induced Wavetrains and Spiral Waves in an Extended FitzHugh-Nagumo Model of Nerve Cell Dynamics.
    Gani MO; Kabir MH; Ogawa T
    Bull Math Biol; 2022 Nov; 84(12):145. PubMed ID: 36350426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wavy fronts and speed bifurcation in excitable systems with cross diffusion.
    Zemskov EP; Kassner K; Hauser MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036219. PubMed ID: 18517497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear waves in a quintic FitzHugh-Nagumo model with cross diffusion: Fronts, pulses, and wave trains.
    Zemskov EP; Tsyganov MA; Kassner K; Horsthemke W
    Chaos; 2021 Mar; 31(3):033141. PubMed ID: 33810726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Traveling kinks in discrete media: exact solution in a piecewise linear model.
    Lahiri A; Majumdar P; Roy MS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026106. PubMed ID: 11863586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of Ising-Bloch fronts with Dirichlet boundaries.
    Yadav A; Browne DA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036218. PubMed ID: 15524623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solitary pulses and periodic wave trains in a bistable FitzHugh-Nagumo model with cross diffusion and cross advection.
    Zemskov EP; Tsyganov MA; Ivanitsky GR; Horsthemke W
    Phys Rev E; 2022 Jan; 105(1-1):014207. PubMed ID: 35193304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Traveling wave solutions of a nerve conduction equation.
    Rinzel J; Keller JB
    Biophys J; 1973 Dec; 13(12):1313-37. PubMed ID: 4761578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Traveling wave" solutions of FitzHugh model with cross-diffusion.
    Berezovskaya F; Camacho E; Wirkus S; Karev G
    Math Biosci Eng; 2008 Apr; 5(2):239-60. PubMed ID: 18613732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Termination of spiral wave breakup in a Fitzhugh-Nagumo model via short and long duration stimuli.
    Gray RA
    Chaos; 2002 Sep; 12(3):941-951. PubMed ID: 12779618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oscillatory multipulsons: Dissipative soliton trains in bistable reaction-diffusion systems with cross diffusion of attractive-repulsive type.
    Zemskov EP; Tsyganov MA; Horsthemke W
    Phys Rev E; 2020 Mar; 101(3-1):032208. PubMed ID: 32289978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rotating wave solutions of the FitzHugh-Nagumo equations.
    Alford JG; Auchmuty G
    J Math Biol; 2006 Nov; 53(5):797-819. PubMed ID: 16906432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oscillatory pulses in FitzHugh-Nagumo type systems with cross-diffusion.
    Zemskov EP; Epstein IR; Muntean A
    Math Med Biol; 2011 Jun; 28(2):217-26. PubMed ID: 20685831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.