These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 20866918)

  • 1. Drops climbing uphill on a slowly oscillating substrate.
    Benilov ES
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026320. PubMed ID: 20866918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thick drops on a slowly oscillating substrate.
    Benilov ES; Cummins CP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):023013. PubMed ID: 24032930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thin three-dimensional drops on a slowly oscillating substrate.
    Benilov ES
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066301. PubMed ID: 22304184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defying gravity: Drops that climb up a vertical wall of their own accord.
    Tadmor R; Baksi A; Gulec S; Jadhav S; N'guessan HE; Somasi V; Tadmor M; Tang S; Wasnik P; Yadav S
    J Colloid Interface Sci; 2020 Mar; 562():608-613. PubMed ID: 31711665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibration-induced climbing of drops.
    Brunet P; Eggers J; Deegan RD
    Phys Rev Lett; 2007 Oct; 99(14):144501. PubMed ID: 17930674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of transient pinning on stability of drops sitting on an inclined plane.
    Berejnov V; Thorne RE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 2):066308. PubMed ID: 17677358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uphill Movement of Sessile Droplets by Electrostatic Actuation.
    Datta S; Das AK; Das PK
    Langmuir; 2015 Sep; 31(37):10190-7. PubMed ID: 26340403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thin three-dimensional droplets on an oscillating substrate with contact angle hysteresis.
    Bradshaw J; Billingham J
    Phys Rev E; 2016 Jan; 93(1):013123. PubMed ID: 26871170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lateral vibration of a water drop and its motion on a vibrating surface.
    Dong L; Chaudhury A; Chaudhury MK
    Eur Phys J E Soft Matter; 2006 Nov; 21(3):231-42. PubMed ID: 17205212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dynamic interaction of water with four dental impression materials during cure.
    Hosseinpour D; Berg JC
    J Prosthodont; 2009 Jun; 18(4):292-300. PubMed ID: 19210607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Influence of Gravity on Contact Angle and Circumference of Sessile and Pendant Drops has a Crucial Historic Aspect.
    Gulec S; Yadav S; Das R; Bhave V; Tadmor R
    Langmuir; 2019 Apr; 35(16):5435-5441. PubMed ID: 30839217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multimode dynamics of a liquid drop over an inclined surface with a wettability gradient.
    Das AK; Das PK
    Langmuir; 2010 Jun; 26(12):9547-55. PubMed ID: 20481583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water slug to drop and film transitions in gas-flow channels.
    Cheah MJ; Kevrekidis IG; Benziger JB
    Langmuir; 2013 Dec; 29(48):15122-36. PubMed ID: 24206393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate constraint modifies the Rayleigh spectrum of vibrating sessile drops.
    Chang CT; Bostwick JB; Steen PH; Daniel S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):023015. PubMed ID: 24032932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dripping of a liquid from a tube in the absence of gravity.
    Suryo R; Basaran OA
    Phys Rev Lett; 2006 Jan; 96(3):034504. PubMed ID: 16486713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of drop movement over an inclined surface using smoothed particle hydrodynamics.
    Das AK; Das PK
    Langmuir; 2009 Oct; 25(19):11459-66. PubMed ID: 19719159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drop evaporation on superhydrophobic PTFE surfaces driven by contact line dynamics.
    Ramos SM; Dias JF; Canut B
    J Colloid Interface Sci; 2015 Feb; 440():133-9. PubMed ID: 25460699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution and Shape of Two-Dimensional Stokesian Drops under the Action of Surface Tension and Electric Field: Linear and Nonlinear Theory and Experiment.
    Granda R; Plog J; Li G; Yurkiv V; Mashayek F; Yarin AL
    Langmuir; 2021 Oct; 37(39):11429-11446. PubMed ID: 34559540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Giant drag reduction in complex fluid drops on rough hydrophobic surfaces.
    Luu LH; Forterre Y
    Phys Rev Lett; 2013 May; 110(18):184501. PubMed ID: 23683201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.