These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 20866932)

  • 1. Discrete rogue waves of the Ablowitz-Ladik and Hirota equations.
    Ankiewicz A; Akhmediev N; Soto-Crespo JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026602. PubMed ID: 20866932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation instability, Fermi-Pasta-Ulam recurrence, rogue waves, nonlinear phase shift, and exact solutions of the Ablowitz-Ladik equation.
    Akhmediev N; Ankiewicz A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046603. PubMed ID: 21599322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of nonautonomous discrete rogue wave solutions for an Ablowitz-Musslimani equation with PT-symmetric potential.
    Yu F
    Chaos; 2017 Feb; 27(2):023108. PubMed ID: 28249392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Few-cycle optical rogue waves: complex modified Korteweg-de Vries equation.
    He J; Wang L; Li L; Porsezian K; Erdélyi R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062917. PubMed ID: 25019861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Higher-order vector discrete rogue-wave states in the coupled Ablowitz-Ladik equations: Exact solutions and stability.
    Wen XY; Yan Z; Malomed BA
    Chaos; 2016 Dec; 26(12):123110. PubMed ID: 28039965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rogue waves and rational solutions of the Hirota equation.
    Ankiewicz A; Soto-Crespo JM; Akhmediev N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046602. PubMed ID: 20481848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rogue waves, rational solitons, and modulational instability in an integrable fifth-order nonlinear Schrödinger equation.
    Yang Y; Yan Z; Malomed BA
    Chaos; 2015 Oct; 25(10):103112. PubMed ID: 26520078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extreme events in discrete nonlinear lattices.
    Maluckov A; Hadzievski Lj; Lazarides N; Tsironis GP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):025601. PubMed ID: 19391797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extended nonlinear Schrödinger equation with higher-order odd and even terms and its rogue wave solutions.
    Ankiewicz A; Wang Y; Wabnitz S; Akhmediev N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012907. PubMed ID: 24580297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soliton management for a variable-coefficient modified Korteweg-de Vries equation.
    Sun ZY; Gao YT; Liu Y; Yu X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026606. PubMed ID: 21929127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discrete nonlinear Schrödinger equations with arbitrarily high-order nonlinearities.
    Khare A; Rasmussen KØ; Salerno M; Samuelsen MR; Saxena A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 2):016607. PubMed ID: 16907204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of optical activity on rogue waves propagating in chiral optical fibers.
    Temgoua DD; Kofane TC
    Phys Rev E; 2016 Jun; 93(6):062223. PubMed ID: 27415269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Approach to first-order exact solutions of the Ablowitz-Ladik equation.
    Ankiewicz A; Akhmediev N; Lederer F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056602. PubMed ID: 21728677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rogue wave solutions for the infinite integrable nonlinear Schrödinger equation hierarchy.
    Ankiewicz A; Akhmediev N
    Phys Rev E; 2017 Jul; 96(1-1):012219. PubMed ID: 29347075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonautonomous discrete bright soliton solutions and interaction management for the Ablowitz-Ladik equation.
    Yu F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032914. PubMed ID: 25871179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Multiple Soliton Interactions in the Generation of Rogue Waves: The Modified Korteweg-de Vries Framework.
    Slunyaev AV; Pelinovsky EN
    Phys Rev Lett; 2016 Nov; 117(21):214501. PubMed ID: 27911520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonintegrable semidiscrete Hirota equation: gauge-equivalent structures and dynamical properties.
    Ma LY; Zhu ZN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033202. PubMed ID: 25314554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rogue-wave bullets in a composite (2+1)D nonlinear medium.
    Chen S; Soto-Crespo JM; Baronio F; Grelu P; Mihalache D
    Opt Express; 2016 Jul; 24(14):15251-60. PubMed ID: 27410802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermalization of the Ablowitz-Ladik lattice in the presence of non-integrable perturbations.
    Selim MA; Pyrialakos GG; Wu FO; Musslimani Z; Makris KG; Khajavikhan M; Christodoulides D
    Opt Lett; 2023 Apr; 48(8):2206-2209. PubMed ID: 37058678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bright and dark rogue internal waves: The Gardner equation approach.
    Bokaeeyan M; Ankiewicz A; Akhmediev N
    Phys Rev E; 2019 Jun; 99(6-1):062224. PubMed ID: 31330713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.