BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 20866932)

  • 1. Discrete rogue waves of the Ablowitz-Ladik and Hirota equations.
    Ankiewicz A; Akhmediev N; Soto-Crespo JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026602. PubMed ID: 20866932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation instability, Fermi-Pasta-Ulam recurrence, rogue waves, nonlinear phase shift, and exact solutions of the Ablowitz-Ladik equation.
    Akhmediev N; Ankiewicz A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046603. PubMed ID: 21599322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of nonautonomous discrete rogue wave solutions for an Ablowitz-Musslimani equation with PT-symmetric potential.
    Yu F
    Chaos; 2017 Feb; 27(2):023108. PubMed ID: 28249392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Few-cycle optical rogue waves: complex modified Korteweg-de Vries equation.
    He J; Wang L; Li L; Porsezian K; Erdélyi R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062917. PubMed ID: 25019861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Higher-order vector discrete rogue-wave states in the coupled Ablowitz-Ladik equations: Exact solutions and stability.
    Wen XY; Yan Z; Malomed BA
    Chaos; 2016 Dec; 26(12):123110. PubMed ID: 28039965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rogue waves and rational solutions of the Hirota equation.
    Ankiewicz A; Soto-Crespo JM; Akhmediev N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046602. PubMed ID: 20481848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rogue waves, rational solitons, and modulational instability in an integrable fifth-order nonlinear Schrödinger equation.
    Yang Y; Yan Z; Malomed BA
    Chaos; 2015 Oct; 25(10):103112. PubMed ID: 26520078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extreme events in discrete nonlinear lattices.
    Maluckov A; Hadzievski Lj; Lazarides N; Tsironis GP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):025601. PubMed ID: 19391797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extended nonlinear Schrödinger equation with higher-order odd and even terms and its rogue wave solutions.
    Ankiewicz A; Wang Y; Wabnitz S; Akhmediev N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012907. PubMed ID: 24580297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soliton management for a variable-coefficient modified Korteweg-de Vries equation.
    Sun ZY; Gao YT; Liu Y; Yu X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026606. PubMed ID: 21929127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discrete nonlinear Schrödinger equations with arbitrarily high-order nonlinearities.
    Khare A; Rasmussen KØ; Salerno M; Samuelsen MR; Saxena A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 2):016607. PubMed ID: 16907204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of optical activity on rogue waves propagating in chiral optical fibers.
    Temgoua DD; Kofane TC
    Phys Rev E; 2016 Jun; 93(6):062223. PubMed ID: 27415269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Approach to first-order exact solutions of the Ablowitz-Ladik equation.
    Ankiewicz A; Akhmediev N; Lederer F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056602. PubMed ID: 21728677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rogue wave solutions for the infinite integrable nonlinear Schrödinger equation hierarchy.
    Ankiewicz A; Akhmediev N
    Phys Rev E; 2017 Jul; 96(1-1):012219. PubMed ID: 29347075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonautonomous discrete bright soliton solutions and interaction management for the Ablowitz-Ladik equation.
    Yu F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032914. PubMed ID: 25871179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Multiple Soliton Interactions in the Generation of Rogue Waves: The Modified Korteweg-de Vries Framework.
    Slunyaev AV; Pelinovsky EN
    Phys Rev Lett; 2016 Nov; 117(21):214501. PubMed ID: 27911520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonintegrable semidiscrete Hirota equation: gauge-equivalent structures and dynamical properties.
    Ma LY; Zhu ZN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033202. PubMed ID: 25314554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rogue-wave bullets in a composite (2+1)D nonlinear medium.
    Chen S; Soto-Crespo JM; Baronio F; Grelu P; Mihalache D
    Opt Express; 2016 Jul; 24(14):15251-60. PubMed ID: 27410802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermalization of the Ablowitz-Ladik lattice in the presence of non-integrable perturbations.
    Selim MA; Pyrialakos GG; Wu FO; Musslimani Z; Makris KG; Khajavikhan M; Christodoulides D
    Opt Lett; 2023 Apr; 48(8):2206-2209. PubMed ID: 37058678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bright and dark rogue internal waves: The Gardner equation approach.
    Bokaeeyan M; Ankiewicz A; Akhmediev N
    Phys Rev E; 2019 Jun; 99(6-1):062224. PubMed ID: 31330713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.